873 research outputs found

    Strictly One-Dimensional Electron System in Au Chains on Ge(001) Revealed By Photoelectron K-Space Mapping

    Full text link
    Atomic nanowires formed by Au on Ge(001) are scrutinized for the band topology of the conduction electron system by k-resolved photoemission. Two metallic electron pockets are observed. Their Fermi surface sheets form straight lines without undulations perpendicular to the chains within experimental uncertainty. The electrons hence emerge as strictly confined to one dimension. Moreover, the system is stable against a Peierls distortion down to 10 K, lending itself for studies of the spectral function. Indications for unusually low spectral weight at the chemical potential are discussed.Comment: 4 pages, 4 figures - revised version with added Fig. 2e) and additional reference

    A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenase-2 in idiopathic pulmonary fibrosis

    Get PDF
    Selective silencing of the cyclooxygenase-2 (COX-2) gene with the loss of the antifibrotic mediator PGE2 contributes to the fibrotic process in idiopathic pulmonary fibrosis (IPF). This study explored the role of G9a- and EZH2-mediated methylation of histone H3 lysine 9 (H3K9me3) and 27 (H3K27me3) in COX-2 silencing in IPF. Chromatin immunoprecipitation (ChIP) and Re-ChIP assays demonstrated marked increases in H3K9me3, H3K27me3 and DNA methylation, together with their respective modifying enzymes G9a, EZH2 and DNA methyltransferases (Dnmts) and respective binding proteins heterochromatin protein 1 (HP1), polycomb protein complex 1 (PRC1) and MeCP2, at the COX-2 promoter in lung fibroblasts from IPF patients (F-IPF) compared with fibroblasts from non-fibrotic lungs (F-NL). HP1, EZH2 and MeCP2 in turn were associated with additional repressive chromatin modifiers in F-IPF. G9a and EZH2 inhibitors and siRNAs and Dnmt1 inhibitor markedly reduced H3K9me3 (49-79%), H3K27me3 (44-81%) and DNA methylation (61-97%) at the COX-2 promoter. This was correlated with increased histone H3 and H4 acetylation, resulting in COX-2 mRNA and protein re-expression in F-IPF. Our results support a central role for G9a- and EZH2-mediated histone hypermethylation and a model of bidirectional, mutually reinforcing and interdependent crosstalk between histone hypermethylation and DNA methylation in COX-2 epigenetic silencing in IPF

    Band structure of SnTe studied by Photoemission Spectroscopy

    Full text link
    We present an angle-resolved photoemission spectroscopy study of the electronic structure of SnTe, and compare the experimental results to ab initio band structure calculations as well as a simplified tight-binding model of the p-bands. Our study reveals the conjectured complex Fermi surface structure near the L-points showing topological changes in the bands from disconnected pockets, to open tubes, and then to cuboids as the binding energy increases, resolving lingering issues about the electronic structure. The chemical potential at the crystal surface is found to be 0.5eV below the gap, corresponding to a carrier density of p =1.14x10^{21} cm^{-3} or 7.2x10^{-2} holes per unit cell. At a temperature below the cubic-rhombohedral structural transition a small shift in spectral energy of the valance band is found, in agreement with model predictions.Comment: 4 figure

    High resolution angle resolved photoemission studies on quasi-particle dynamics in graphite

    Full text link
    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is ~0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
    corecore