106 research outputs found

    Dzyaloshinskii-Moriya interaction and spin re-orientation transition in the frustrated kagome lattice antiferromagnet

    Full text link
    Magnetization, specific heat, and neutron scattering measurements were performed to study a magnetic transition in jarosite, a spin-5/2 kagome lattice antiferromagnet. When a magnetic field is applied perpendicular to the kagome plane, magnetizations in the ordered state show a sudden increase at a critical field H_c, indicative of the transition from antiferromagnetic to ferromagnetic states. This sudden increase arises as the spins on alternate kagome planes rotate 180 degrees to ferromagnetically align the canted moments along the field direction. The canted moment on a single kagome plane is a result of the Dzyaloshinskii-Moriya interaction. For H < H_c, the weak ferromagnetic interlayer coupling forces the spins to align in such an arrangement that the canted components on any two adjacent layers are equal and opposite, yielding a zero net magnetic moment. For H > H_c, the Zeeman energy overcomes the interlayer coupling causing the spins on the alternate layers to rotate, aligning the canted moments along the field direction. Neutron scattering measurements provide the first direct evidence of this 180-degree spin rotation at the transition.Comment: 13 pages, 15 figure

    Multivariate calibration approach for quantitative determination of cell-line cross contamination by intact cell mass spectrometry and artificial neural networks

    Get PDF
    Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general

    Rotating Gliding Arc: Innovative Source for VOC Remediation

    Get PDF
    The large-scale plasma treatment of waste gas in industrial or municipal conditions requires high efficiency of plasma conversion process at high processing speed, i.e., large volumetric flow. The integration of the plasma unit into existing systems puts demands on the pipe-system compatibility and minimal pressure drop due to adoption of plasma processing step. These conditions are met at the innovative rotating electrode gliding arc plasma unit described in this article. The system consists of propeller-shaped high voltage electrode inside grounded metallic tube. The design of HV electrode eliminates the pressure drop inside the air system, contrary the plasma unit itself is capable of driving the waste gas at volumetric flow up to 300 m3/hr for 20 cm pipe diameter. In the article the first results on pilot study of waste air treatment will be given for selected volatile organic compounds together with basic characteristic of the plasma unit used

    Fragile antiferromagnetism in the heavy-fermion compound YbBiPt

    Get PDF
    We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, τAFM\tau_{\rm{AFM}} = (121212\frac{1}{2} \frac{1}{2} \frac{1}{2}), and ordered moments that align along the [1 1 1] direction of the cubic unit cell. We describe the scattering in terms of a two-Gaussian peak fit, which consists of a narrower component that appears below TN 0.4T_{\rm{N}}~\approx 0.4 K and corresponds to a magnetic correlation length of ξn\xi_{\rm{n}} \approx 80 A˚\rm{\AA}, and a broad component that persists up to TT^*\approx 0.7 K and corresponds to antiferromagnetic correlations extending over ξb\xi_{\rm{b}} \approx 20 A˚\rm{\AA}. Our results illustrate the fragile magnetic order present in YbBiPt and provide a path forward for microscopic investigations of the ground states and fluctuations associated with the purported quantum critical point in this heavy-fermion compound.Comment: 5 pages, 3 figure

    Crystal structure and high-field magnetism of La2CuO4

    Get PDF
    Neutron diffraction was used to determine the crystal structure and magnetic ordering pattern of a La2CuO4 single crystal, with and without applied magnetic field. A previously unreported, subtle monoclinic distortion of the crystal structure away from the orthorhombic space group Bmab was detected. The distortion is also present in lightly Sr-doped crystals. A refinement of the crystal structure shows that the deviation from orthorhombic symmetry is predominantly determined by displacements of the apical oxygen atoms. An in-plane magnetic field is observed to drive a continuous reorientation of the copper spins from the orthorhombic b-axis to the c-axis, directly confirming predictions based on prior magnetoresistance and Raman scattering experiments. A spin-flop transition induced by a c-axis oriented field previously reported for non-stoichiometric La2CuO4 is also observed, but the transition field (11.5 T) is significantly larger than that in the previous work

    First Observation of Quantum Oscillations in the Ferromagnetic Superconductor UCoGe

    Full text link
    We succeeded in growing high quality single crystals of the ferromagnetic superconductor UCoGe and measured the magnetoresistance at fields up to 34T. The Shubnikov-de Haas signal was observed for the first time in a U-111 system (UTGe, UTSi, T: transition metal). A small pocket Fermi surface (F~1kT) with large cyclotron effective mass 25m0 was detected at high fields above 22T, implying that UCoGe is a low carrier system accompanyed with heavy quasi-particles. The observed frequency decreases with increasing fields, indicating that the volume of detected Fermi surface changes nonlinearly with field. The cyclotron mass also decreases, which is consistent with the decrease of the A coefficient of resistivity.Comment: 5 pages, 5 figures, accepted for publication in J. Phys. Soc. Jp
    corecore