263 research outputs found

    Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions

    Get PDF
    In this paper we study algorithms to find a Gaussian approximation to a target measure defined on a Hilbert space of functions; the target measure itself is defined via its density with respect to a reference Gaussian measure. We employ the Kullback-Leibler divergence as a distance and find the best Gaussian approximation by minimizing this distance. It then follows that the approximate Gaussian must be equivalent to the Gaussian reference measure, defining a natural function space setting for the underlying calculus of variations problem. We introduce a computational algorithm which is well-adapted to the required minimization, seeking to find the mean as a function, and parameterizing the covariance in two different ways: through low rank perturbations of the reference covariance; and through Schr\"odinger potential perturbations of the inverse reference covariance. Two applications are shown: to a nonlinear inverse problem in elliptic PDEs, and to a conditioned diffusion process. We also show how the Gaussian approximations we obtain may be used to produce improved pCN-MCMC methods which are not only well-adapted to the high-dimensional setting, but also behave well with respect to small observational noise (resp. small temperatures) in the inverse problem (resp. conditioned diffusion).Comment: 28 page

    A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit

    Get PDF
    We describe a new MCMC method optimized for the sampling of probability measures on Hilbert space which have a density with respect to a Gaussian; such measures arise in the Bayesian approach to inverse problems, and in conditioned diffusions. Our algorithm is based on two key design principles: (i) algorithms which are well-defined in infinite dimensions result in methods which do not suffer from the curse of dimensionality when they are applied to approximations of the infinite dimensional target measure on \bbR^N; (ii) non-reversible algorithms can have better mixing properties compared to their reversible counterparts. The method we introduce is based on the hybrid Monte Carlo algorithm, tailored to incorporate these two design principles. The main result of this paper states that the new algorithm, appropriately rescaled, converges weakly to a second order Langevin diffusion on Hilbert space; as a consequence the algorithm explores the approximate target measures on \bbR^N in a number of steps which is independent of NN. We also present the underlying theory for the limiting non-reversible diffusion on Hilbert space, including characterization of the invariant measure, and we describe numerical simulations demonstrating that the proposed method has favourable mixing properties as an MCMC algorithm.Comment: 41 pages, 2 figures. This is the final version, with more comments and an extra appendix adde

    Kullback--Leibler approximation for probability measures on infinite dimensional spaces

    Get PDF
    In a variety of applications it is important to extract information from a probability measure Ī¼\mu on an infinite dimensional space. Examples include the Bayesian approach to inverse problems and (possibly conditioned) continuous time Markov processes. It may then be of interest to find a measure Ī½\nu, from within a simple class of measures, which approximates Ī¼\mu. This problem is studied in the case where the Kullback--Leibler divergence is employed to measure the quality of the approximation. A calculus of variations viewpoint is adopted, and the particular case where Ī½\nu is chosen from the set of Gaussian measures is studied in detail. Basic existence and uniqueness theorems are established, together with properties of minimizing sequences. Furthermore, parameterization of the class of Gaussians through the mean and inverse covariance is introduced, the need for regularization is explained, and a regularized minimization is studied in detail. The calculus of variations framework resulting from this work provides the appropriate underpinning for computational algorithms

    Kullback--Leibler approximation for probability measures on infinite dimensional spaces

    Get PDF
    In a variety of applications it is important to extract information from a probability measure Ī¼\mu on an infinite dimensional space. Examples include the Bayesian approach to inverse problems and (possibly conditioned) continuous time Markov processes. It may then be of interest to find a measure Ī½\nu, from within a simple class of measures, which approximates Ī¼\mu. This problem is studied in the case where the Kullback--Leibler divergence is employed to measure the quality of the approximation. A calculus of variations viewpoint is adopted, and the particular case where Ī½\nu is chosen from the set of Gaussian measures is studied in detail. Basic existence and uniqueness theorems are established, together with properties of minimizing sequences. Furthermore, parameterization of the class of Gaussians through the mean and inverse covariance is introduced, the need for regularization is explained, and a regularized minimization is studied in detail. The calculus of variations framework resulting from this work provides the appropriate underpinning for computational algorithms

    Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements

    Get PDF
    The Koringa-Kohn-Rostoker ā€”coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles
    • ā€¦
    corecore