520 research outputs found

    Gap modification of atomically thin boron nitride by phonon mediated interactions

    Get PDF
    A theory is presented for the modification of bandgaps in atomically thin boron nitride (BN) by attractive interactions mediated through phonons in a polarizable substrate, or in the BN plane. Gap equations are solved, and gap enhancements are found to range up to 70% for dimensionless electron-phonon coupling \lambda=1, indicating that a proportion of the measured BN bandgap may have a phonon origin

    A New Family of Jumonji C Domain-Containing KDM Inhibitors Inspired by Natural Product Purpurogallin

    Get PDF
    Aberrant epigenetic modifications are involved in cancer development. Jumonji C domain-containing histone lysine demethylases (KDMs) are found mainly up-regulated in breast, prostate, and colon cancer. Currently, growing interest is focusing on the identification and development of new inhibitors able to block the activity of KDMs and thus reduce tumor progression. KDM4A is known to play a role in several cellular physiological processes, and was recently found overexpressed in a number of pathological states, including cancer. In this work, starting from the structure of purpurogallin 9aa, previously identified as a natural KDM4A inhibitor, we synthesized two main sets of compound derivatives in order to improve their inhibitory activity against KDM4A in vitro and in cells, as well as their antitumor action. Based on the hypothetical biogenesis of the 5-oxo-5H-benzo[7]annulene skeleton of the natural product purpurogallin (Salfeld, 1960; Horner et al., 1961; Dürckheimer and Paulus, 1985; Tanaka et al., 2002; Yanase et al., 2005) the pyrogallol and catechol units were first combined with structural modifications at different positions of the aryl ring using enzyme-mediated oxidative conditions, generating a series of benzotropolone analogs. Two of the synthetic analogs of purpurogallin, 9ac and 9bc, showed an efficient inhibition (50 and 80%) of KDM4A in enzymatic assays and in cells by increasing levels of its specific targets, H3K9me3/2 and H3K36me3. However, these two compounds/derivatives did not induce cell death. We then synthesized a further set of analogs of these two compounds with greater structural diversification. The most potent of these analogs, 9bf, displayed the highest KDM4A inhibitory enzymatic activity in vitro (IC50 of 10.1 and 24.37 μM) in colon cancer cells, and the strongest antitumor action in several solid and hematological human cancer cell lines with no toxic effect in normal cells. Our findings suggest that further development of this compound and its derivatives may lead to the identification of new therapeutic antitumor agents acting through inhibition of KDM4A

    Detection of Enterobacterial Lipopolysaccharides and Experimental Endotoxemia by Means of an Immunolimulus Assay Using Both SerotypeSpecific and Cross-Reactive Antibodies

    Get PDF
    The immunolimulus (IML) assay system uses solid-phase endotoxin antibodies to capture lipopolysaccharide (LPS), which is then quantified by a modification of the chromogenic limulus amebocyte lysate (CLAL) method. Monoclonal antibodies (MAbs) reactive with selected 0 antigen serotypes of Escherichia coli (O18) and Salmonella typhimurium (O-9,12), when used in the IML, were shown to be highly specific in detecting their respective endotoxins in purified form and in plasma samples from experimentally infected animals. A murine MAb that was broadly cross-reactive with E. coli, Salmonella, and Shigella endotoxins also proved to be highly effective in the IML assay for capturing LPS molecules from both E. coli and S. typhimurium strains. These results indicate that IML assays can detect smooth-type enterobacterial endotoxins in plasma and suggest that such assays have potential for use in the rapid diagnosis of sepsis and endotoxemia caused by different enterobacterial specie

    A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours

    Get PDF
    Enhancement of cellular senescence in tumours triggers a stable cell growth arrest and activation of an antitumour immune response that can be exploited for cancer therapy. Currently, there are only a limited number of targeted therapies that act by increasing senescence in cancers, but the majority of them are not selective and also target healthy cells. Here we developed a chemogenomic screening to identify compounds that enhance senescence in PTEN-deficient cells without affecting normal cells. By using this approach, we identified casein kinase 2 (CK2) as a pro-senescent target. Mechanistically, we show that Pten loss increases CK2 levels by activating STAT3. CK2 upregulation in Pten null tumours affects the stability of Pml, an essential regulator of senescence. However, CK2 inhibition stabilizes Pml levels enhancing senescence in Pten null tumours. Taken together, our screening strategy has identified a novel STAT3-CK2-PML network that can be targeted for pro-senescence therapy for cancer
    corecore