37,779 research outputs found
Performance of wind turbines in a turbulent atmosphere
The effect of atmospheric turbulence on the power fluctuations of large wind turbines was studied. The significance of spatial non-uniformities of the wind is emphasized. The turbulent wind with correlation in time and space is simulated on the computer by Shinozukas method. The wind turbulence is modelled according to the Davenport spectrum with an exponential spatial correlation function. The rotor aerodynamics is modelled by simple blade element theory. Comparison of the spectrum of power output signal between 1-D and 3-D turbulence, shows the significant power fluctuations centered around the blade passage frequency
Design, fabrication, and test of a steel spar wind turbine blade
The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-O aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested
Bose-Einstein Correlations and the Equation of State of Nuclear Matter
Within a relativistic hydrodynamic framework, we use four different equations
of state of nuclear matter to compare to experimental spectra from CERN/SPS
experiments NA44 and NA49. Freeze-out hypersurfaces and Bose-Einstein
correlation functions for identical pion pairs are discussed. We find that
two-pion Bose-Einstein interferometry measures the relationship between the
temperature and the energy density in the equation of state during the late
hadronic stage of the fireball expansion. Little sensitivity of the
light-hadron data to a quark-gluon plasma phase-transition is seen.Comment: 4 pages, including 4 figures. You can also download a PostScript file
of the manuscript from http://p2hp2.lanl.gov/people/schlei/eprint.htm
Ramsey interferometry with oppositely detuned fields
We report a narrowing of the interference pattern obtained in an atomic
Ramsey interferometer if the two separated fields have different frequency and
their phase difference is controlled. The width of the Ramsey fringes depends
inversely on the free flight time of ground state atoms before entering the
first field region in addition to the time between the fields. The effect is
stable also for atomic wavepackets with initial position and momentum
distributions and for realistic mode functions.Comment: 6 pages, 6 figure
Energy efficient engine. Fan and quarter-stage component performance report
The fan configuration for the general Electric/NASA Energy Efficient Engine was selected following an extensive preliminary design study. The fan has an inlet radius ratio of 0.342 and a specific flowrate of 208.9 Kg/sec/sq. m (42.8 1bm/sec/sq. ft). The design corrected tip speed is 411.5 m/sec (1350 ft/sec) producing a bypass flow total-pressure ratio of 1.65 and a core flow total-pressure ratio of 1.6. The design bypass ratio is 6.8. The aerodynamic design point corresponds to the maximum climb power setting at Mach 0.8 and 10.67 Km (35,000 ft) altitude. The fully-instrumented fan component was tested in the Lynn Large Fan Test Facility in 1981. The overall performance results, reported herein, showed excellent fan performance with the fan meeting all of its component test goals of flow, efficiency and stall margin
A methodology for the environmental assessment of advanced coal extraction systems
Procedures developed to identify and assess potential environment impacts of advanced mining technology as it moves from a generic concept to a more systems definition are described. Two levels of assessment are defined in terms of the design stage of the technology being evaluated. The first level of analysis is appropriate to a conceptual design. At this level it is assumed that each mining process has known and potential environmental impacts that are generic to each mining activity. By using this assumption, potential environmental impacts can be identified for new mining systems. When two or more systems have been assessed, they can be evaluated comparing potential environmental impacts. At the preliminary stage of design, a systems performance can be assessed again with more precision. At this level of systems definition, potential environmental impacts can be analyzed and their significane determined in a manner to facilitate comparisons between systems. At each level of analysis, suggestions calculated to help the designer mitigate potentially harmful impacts are provided
Aerothermal modeling program. Phase 2, element B: Flow interaction experiment
NASA has instituted an extensive effort to improve the design process and data base for the hot section components of gas turbine engines. The purpose of element B is to establish a benchmark quality data set that consists of measurements of the interaction of circular jets with swirling flow. Such flows are typical of those that occur in the primary zone of modern annular combustion liners. Extensive computations of the swirling flows are to be compared with the measurements for the purpose of assessing the accuracy of current physical models used to predict such flows
- …
