30 research outputs found

    Linkage to chromosome 2q32.2-q33.3 in familial serrated neoplasia (Jass syndrome)

    Get PDF
    Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10 K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (P = 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9

    Risk Factors for Colorectal Cancer in Patients with Multiple Serrated Polyps: A Cross-Sectional Case Series from Genetics Clinics

    Get PDF
    Patients with multiple serrated polyps are at an increased risk for developing colorectal cancer (CRC). Recent reports have linked cigarette smoking with the subset of CRC that develops from serrated polyps. The aim of this work therefore was to investigate the association between smoking and the risk of CRC in high-risk genetics clinic patients presenting with multiple serrated polyps. Methods and Findings We identified 151 Caucasian individuals with multiple serrated polyps including at least 5 outside the rectum, and classified patients into non-smokers, current or former smokers at the time of initial diagnosis of polyposis. Cases were individuals with multiple serrated polyps who presented with CRC. Controls were individuals with multiple serrated polyps and no CRC. Multivariate logistic regression was performed to estimate associations between smoking and CRC with adjustment for age at first presentation, sex and co-existing traditional adenomas, a feature that has been consistently linked with CRC risk in patients with multiple serrated polyps. CRC was present in 56 (37%) individuals at presentation. Patients with at least one adenoma were 4 times more likely to present with CRC compared with patients without adenomas (OR = 4.09; 95%CI 1.27 to 13.14; P = 0.02). For females, the odds of CRC decreased by 90% in current smokers as compared to never smokers (OR = 0.10; 95%CI 0.02 to 0.47; P = 0.004) after adjusting for age and adenomas. For males, there was no relationship between current smoking and CRC. There was no statistical evidence of an association between former smoking and CRC for both sexes. Conclusion A decreased odds for CRC was identified in females with multiple serrated polyps who currently smoke, independent of age and the presence of a traditional adenoma. Investigations into the biological basis for these observations could lead to non-smoking-related therapies being developed to decrease the risk of CRC and colectomy in these patients.Daniel D. Buchanan, Kevin Sweet, Musa Drini, Mark A. Jenkins, Aung Ko Win, Dallas R. English, Michael D. Walsh, Mark Clendenning, Diane M. McKeone, Rhiannon J. Walters, Aedan Roberts, Sally-Ann Pearson, Erika Pavluk, John L. Hopper, Michael R. Gattas, Jack Goldblatt, Jill George, Graeme K. Suthers, Kerry D. Phillips, Sonja Woodal, Julie Arnold, Kathy Tucker, Amanda Muir, Michael Field, Sian Greening, Steven Gallinger, Renee Perrier, John A. Baron, John D. Potter, Robert Haile, Wendy Franke, Albert de la Chapelle, Finlay Macrae, Christophe Rosty, Neal I. Walker, Susan Parry and Joanne P. Youn

    Investigation of the widely applicable Bayesian information criterion

    No full text
    The widely applicable Bayesian information criterion (WBIC) is a simple and fast approximation to the model evidence that has received little practical consideration. WBIC uses the fact that the log evidence can be written as an expectation, with respect to a powered posterior proportional to the likelihood raised to a power t(0,1)t(0,1) , of the log deviance. Finding this temperature value tt is generally an intractable problem. We find that for a particular tractable statistical model that the mean squared error of an optimally-tuned version of WBIC with correct temperature tt is lower than an optimally-tuned version of thermodynamic integration (power posteriors). However in practice WBIC uses the a canonical choice of t=1/log(n)t=1/log(n) . Here we investigate the performance of WBIC in practice, for a range of statistical models, both regular models and singular models such as latent variable models or those with a hierarchical structure for which BIC cannot provide an adequate solution. Our findings are that, generally WBIC performs adequately when one uses informative priors, but it can systematically overestimate the evidence, particularly for small sample sizes.Science Foundation IrelandAustralian Postgraduate Award (APA)Australian Research Council Discovery Gran

    Comparison of human chromosome 6p25 with mouse chromosome 13 reveals a greatly expanded ov-serpin gene repertoire in the mouse.

    No full text
    Ov-serpins are intracellular proteinase inhibitors implicated in the regulation of tumor progression, inflammation, and cell death. The 13 human ov-serpin genes are clustered at 6p25 (3 genes) and 18q21 (10 genes), and share common structures. We show here that a 1-Mb region on mouse chromosome 13 contains at least 15 ov-serpin genes compared with the three ov-serpin genes within 0.35 Mb at human 6p25 (SERPINB1 (MNEI), SERPINB6 (PI-6), SER-PINB9 (PI-9)). The mouse serpins have characteristics of functional inhibitors and fall into three groups on the basis of similarity to MNEI, PI-6, or PI-9. The genes map between the mouse orthologs of the Werner helicase interacting protein and NAD(P)H menadioine oxidoreductase 2 genes, in a region that contains the markers D13Mit136 and D13Mit116. They have the seven-exon structure typical of human 6p25 ov-serpin genes, with identical intron phasing. Most show restricted patterns of expression, with common sites of synthesis being the placenta and immune tissue. Compared with human, this larger mouse serpin repertoire probably reflects the need to regulate a larger proteinase repertoire arising from differing evolutionary pressures on the reproductive and immune systems
    corecore