13,185 research outputs found

    On Nonperturbative Exactness of Konishi Anomaly and the Dijkgraaf-Vafa Conjecture

    Full text link
    In this paper we study the nonperturbative corrections to the generalized Konishi anomaly that come from the strong coupling dynamics of the gauge theory. We consider U(N) gauge theory with adjoint and Sp(N) or SO(N) gauge theory with symmetric or antisymmetric tensor. We study the algebra of chiral rotations of the matter field and show that it does not receive nonperturbative corrections. The algebra implies Wess-Zumino consistency conditions for the generalized Konishi anomaly which are used to show that the anomaly does not receive nonperturbative corrections for superpotentials of degree less than 2l+1 where 2l=3c(Adj)-c(R) is the one-loop beta function coefficient. The superpotentials of higher degree can be nonperturbatively renormalized because of the ambiguities in the UV completion of the gauge theory. We discuss the implications for the Dijkgraaf-Vafa conjecture.Comment: 23 page

    Relaxation to magnetohydrodynamics equilibria via collision brackets

    Full text link
    Metriplectic dynamics is applied to compute equilibria of fluid dynamical systems. The result is a relaxation method in which Hamiltonian dynamics (symplectic structure) is combined with dissipative mechanisms (metric structure) that relaxes the system to the desired equilibrium point. The specific metric operator, which is considered in this work, is formally analogous to the Landau collision operator. These ideas are illustrated by means of case studies. The considered physical models are the Euler equations in vorticity form, the Grad-Shafranov equation, and force-free MHD equilibria.Comment: Conference Proceeding (Theory of Fusions Plasmas, 2018), 9 pages, 8 figure

    Particle production in p-p collisions at sqrt(s) = 17 GeV within the statistical model

    Full text link
    A thermal-model analysis of particle production of p-p collisions at sqrt(s) = 17 GeV using the latest available data is presented. The sensitivity of model parameters on data selections and model assumptions is studied. The system-size dependence of thermal parameters and recent differences in the statistical model analysis of p-p collisions at the super proton synchrotron (SPS) are discussed. It is shown that the temperature and strangeness undersaturation factor depend strongly on kaon yields which at present are still not well known experimentally. It is conclude, that within the presently available data at the SPS it is rather unlikely that the temperature in p-p collisions exceeds significantly that expected in central collisions of heavy ions at the same energy.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Chiral black hole in three-dimensional gravitational Chern-Simons

    Full text link
    A chiral black hole can be defined from the three-dimensional pure gravitational Chern-Simons action as an independent gravitational theory. The third order derivative of the Cotton tensor gives a dimensional constant which plays a role of the cosmological constant. The handedness of angular momentum depends on the signature of the Chern-Simons coefficient. Even in the massless black hole which corresponds to the static black hole, it has a nonvanishing angular momentum. We also study statistical entropy and thermodynamic stability.Comment: 6 pages, a reference added, minor changes to introductio

    Gravitational Field of Spherical Branes

    Full text link
    The warped solution of Einstein's equations corresponding to the spherical brane in five-dimensional AdS is considered. This metric represents interiors of black holes on both sides of the brane and can provide gravitational trapping of physical fields on the shell. It is found the analytic form of the coordinate transformations from the Schwartschild to co-moving frame that exists only in five dimensions. It is shown that in the static coordinates active gravitational mass of the spherical brane, in agreement with Tolman's formula, is negative, i.e. such objects are gravitationally repulsive.Comment: Minor corrections, 8 pages, the version accepted by Mod. Phys. Lett.

    Conserved current for the Cotton tensor, black hole entropy and equivariant Pontryagin forms

    Full text link
    The Chern-Simons lagrangian density in the space of metrics of a 3-dimensional manifold M is not invariant under the action of diffeomorphisms on M. However, its Euler-Lagrange operator can be identified with the Cotton tensor, which is invariant under diffeomorphims. As the lagrangian is not invariant, Noether Theorem cannot be applied to obtain conserved currents. We show that it is possible to obtain an equivariant conserved current for the Cotton tensor by using the first equivariant Pontryagin form on the bundle of metrics. Finally we define a hamiltonian current which gives the contribution of the Chern-Simons term to the black hole entropy, energy and angular momentum.Comment: 13 page
    • …
    corecore