9,567 research outputs found

    An experimental evaluation of the performance deficit of an aircraft engine starter turbine

    Get PDF
    An experimental investigation was made to determine the reasons for the low aerodynamic performance of a 13.5 centimeter tip diameter aircraft engine starter turbine. The investigation consisted of an evaluation of both the stator and the stage. An approximate ten percent improvement in turbine efficiency was obtained when the honeycomb shroud over the rotor blade tips was filled to obtain a solid shroud surface

    Multiphoton Bloch-Siegert shifts and level-splittings in spin-one systems

    Full text link
    We consider a spin-boson model in which a spin 1 system is coupled to an oscillator. A unitary transformation is applied which allows a separation of terms responsible for the Bloch-Siegert shift, and terms responsible for the level splittings at anticrossings associated with Bloch-Siegert resonances. When the oscillator is highly excited, the system can maintain resonance for sequential multiphoton transitions. At lower levels of excitation, resonance cannot be maintained because energy exchange with the oscillator changes the level shift. An estimate for the critical excitation level of the oscillator is developed.Comment: 14 pages, 3 figure

    Reasons for low aerodynamic performance of 13.5-centimeter-tip-diameter aircraft engine starter turbine

    Get PDF
    The reasons for the low aerodynamic performance of a 13.5 cm tip diameter aircraft engine starter turbine were investigated. Both the stator and the stage were evaluated. Approximately 10 percent improvement in turbine efficiency was obtained when the honeycomb shroud over the rotor blade tips was filled to obtain a solid shroud surface. Efficiency improvements were obtained for three rotor configurations when the shroud was filled. It is suggested that the large loss associated with the open honeycomb shroud is due primarily to energy loss associated with gas transportation as a result of the blade to blade pressure differential at the tip section

    High-order noise filtering in nontrivial quantum logic gates

    Full text link
    Treating the effects of a time-dependent classical dephasing environment during quantum logic operations poses a theoretical challenge, as the application of non-commuting control operations gives rise to both dephasing and depolarization errors that must be accounted for in order to understand total average error rates. We develop a treatment based on effective Hamiltonian theory that allows us to efficiently model the effect of classical noise on nontrivial single-bit quantum logic operations composed of arbitrary control sequences. We present a general method to calculate the ensemble-averaged entanglement fidelity to arbitrary order in terms of noise filter functions, and provide explicit expressions to fourth order in the noise strength. In the weak noise limit we derive explicit filter functions for a broad class of piecewise-constant control sequences, and use them to study the performance of dynamically corrected gates, yielding good agreement with brute-force numerics.Comment: Revised and expanded to include filter function terms beyond first order in the Magnus expansion. Related manuscripts available from http://www.physics.usyd.edu.au/~mbiercu

    Effect of disorder on the thermal transport and elastic properties in thermoelectric Zn4Sb3

    Get PDF
    Zn4Sb3 undergoes a phase transition from alpha to beta phase at T1[approximate]250 K. The high temperature beta-Zn4Sb3 phase has been widely investigated as a potential state-of-the-art thermoelectric (TE) material, due to its remarkably low thermal conductivity. We have performed electronic and thermal transport measurements exploring the structural phase transition at 250 K. The alpha to beta phase transition manifests itself by anomalies in the resistivity, thermopower, and specific heat at 250 K as well as by a reduction in the thermal conductivity as Zn4Sb3 changes phase from the ordered alpha to the disordered beta-phase. Moreover, measurements of the elastic constants using resonant ultrasound spectroscopy (RUS) reveal a dramatic softening at the order-disorder transition upon warming. These measurements provide further evidence that the remarkable thermoelectric properties of beta-Zn4Sb3 are tied to the disorder in the crystal structure

    Jahn-Teller Distortions and the Supershell Effect in Metal Nanowires

    Full text link
    A stability analysis of metal nanowires shows that a Jahn-Teller deformation breaking cylindrical symmetry can be energetically favorable, leading to stable nanowires with elliptic cross sections. The sequence of stable cylindrical and elliptical nanowires allows for a consistent interpretation of experimental conductance histograms for alkali metals, including both the shell and supershell structures. It is predicted that for gold, elliptical nanowires are even more likely to form since their eccentricity is smaller than for alkali metals. The existence of certain metastable ``superdeformed'' nanowires is also predicted

    Possible mechanism for achieving glass-like thermal conductivities in crystals with off-center atoms

    Full text link
    In the filled Ga/Ge clathrate, Eu and Sr are off-center in site 2 but Ba is on-center. All three filler atoms (Ba,Eu,Sr) have low temperature Einstein modes; yet only for the Eu and Sr systems is there a large dip in the thermal conductivity, attributed to the Einstein modes. No dip is observed for Ba. Here we argue that it is the off-center displacement that is crucial for understanding this unexplained difference in behavior. It enhances the coupling between the "rattler" motion and the lattice phonons for the Eu and Sr systems, and turns on/off another scattering mechanism (for 1K < T < 20K) produced by the presence/absence of off-center sites. The random occupation of different off-center sites produces a high density of symmetry-breaking defects which scatters phonons. It may also be important for improving our understanding of other glassy systems.Comment: 4 pages, 1 figure (2 parts) -- v2: intro broadened; strengthened arguments regarding need for additional phonon scattering mechanis

    Charge Order Superstructure with Integer Iron Valence in Fe2OBO3

    Get PDF
    Solution-grown single crystals of Fe2OBO3 were characterized by specific heat, Mossbauer spectroscopy, and x-ray diffraction. A peak in the specific heat at 340 K indicates the onset of charge order. Evidence for a doubling of the unit cell at low temperature is presented. Combining structural refinement of diffraction data and Mossbauer spectra, domains with diagonal charge order are established. Bond-valence-sum analysis indicates integer valence states of the Fe ions in the charge ordered phase, suggesting Fe2OBO3 is the clearest example of ionic charge order so far.Comment: 4 pages, 5 figures. Fig. 3 is available in higher resolution from the authors. PRL in prin

    Optical signature of the pressure-induced dimerization in the honeycomb iridate α\alpha-Li2_2IrO3_3

    Get PDF
    We studied the effect of external pressure on the electrodynamic properties of α\alpha-Li2_2IrO3_3 single crystals in the frequency range of the phonon modes and the Ir dd-dd transitions. The abrupt hardening of several phonon modes under pressure supports the onset of the dimerized phase at the critical pressure PcP_c=3.8 GPa. With increasing pressure an overall decrease in spectral weight of the Ir dd-dd transitions is found up to PcP_c. Above PcP_c, the local (on-site) dd-dd excitations gain spectral weight with increasing pressure, which hints at a pressure-induced increase in the octahedral distortions. The non-local (intersite) Ir dd-dd transitions show a monotonic blue-shift and decrease in spectral weight. The changes observed for the non-local excitations are most prominent well above PcP_c, namely for pressures \geq12 GPa, and only small changes occur for pressures close to PcP_c. The profile of the optical conductivity at high pressures (\sim20 GPa) appears to be indicative for the dimerized state in iridates.Comment: 10 pages, 6 figures; accepted for publication in Phys. Rev.

    Inflammatory bowel disease-specific autoantibodies in HLA-B27-associated spondyloarthropathies: Increased prevalence of ASCA and pANCA

    Get PDF
    Aims: An association between inflammatory bowel disease (IBD) and spondyloarthropathies (SpA) has repeatedly been reported. The aim of the present study was to investigate whether serologic markers of IBD, e. g. antibodies against Saccharomyces cerevisiae (ASCA), antibodies against exocrine pancreas (PAB) and perinuclear antineutrophil cytoplasmic antibodies (pANCA) are present in HLA-B27-associated SpA. Methods: 87 patients with HLA-B27-positive SpA and 145 controls were tested for ASCA, PAB and pANCA employing ELISA or indirect immunofluorescence, respectively. Antibody-positive patients were interviewed regarding IBD-related symptoms using a standardized questionnaire. Results/Conclusion: When compared to the controls, ASCA IgA but not ASCA IgG levels were significantly increased in patients with SpA, in particular in ankylosing spondylitis (AS) and undifferentiated SpA (uSpA). pANCA were found in increased frequency in patients with SpA whereas PAB were not detected. The existence of autoantibodies was not associated with gastrointestinal symptoms but sustains the presence of a pathophysiological link between bowel inflammation and SpA. Copyright (C) 2004 S. Karger AG, Basel
    corecore