7,802 research outputs found

    Summary of Discussion Question 4: Energy Expandability of a Linear Collider

    Get PDF
    We report on Discussion Question 4, in Sub-group 1 (`TeV-class') of the Snowmass Working Group E3: `Experimental Approaches: Linear Colliders', which addresses the energy expandability of a linear collider. We first synthesize discussions of the energy reach of the hardware of the 500 GeV designs for TESLA and NLC/JLC. Next, we review plans for increasing the energy to 800-1000 GeV. We then look at options for expanding the energies to 1500 GeV and sketch the two-beam accelerator approach to achieving multi-TeV energies.Comment: Presented at Snowmass 2001 (6 pages, 2 figures

    Analysis of the X-ray Emission of Nine Swift Afterglows

    Full text link
    The X-ray light-curves of 9 Swift XRT afterglows (050126, 050128, 050219A, 050315, 050318, 050319, 050401, 050408, 050505) display a complex behaviour: a steep t^{-3.0 \pm 0.3} decay until ~400 s, followed by a significantly slower t^{-0.65+/-0.20} fall-off, which at 0.2--2 d after the burst evolves into a t^{-1.7+/-0.5} decay. We consider three possible models for the geometry of relativistic blast-waves (spherical outflows, non-spreading jets, and spreading jets), two possible dynamical regimes for the forward shock (adiabatic and fully radiative), and we take into account a possible angular structure of the outflow and delayed energy injection in the blast-wave, to identify the models which reconcile the X-ray light-curve decay with the slope of the X-ray continuum for each of the above three afterglow phases. By piecing together the various models for each phase in a way that makes physical sense, we identify possible models for the entire X-ray afterglow. The major conclusion of this work is that a long-lived episode of energy injection in the blast-wave, during which the shock energy increases at t^{1.0+/-0.5}, is required for five afterglows and could be at work in the other four as well. Optical observations in conjunction with the X-ray can distinguish among these various models. Our simple tests allow the determination of the location of the cooling frequency relative to the X-ray domain and, thus, of the index of the electron power-law distribution with energy in the blast-wave. The resulting indices are clearly inconsistent with an universal value.Comment: 10 pages, minor changes, to be published in the MNRA

    GRB Energetics in the Swift Era

    Full text link
    We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known redshift that were detected by the Swift spacecraft and monitored by the satellite's X-ray Telescope (XRT). Using the bolometric fluence values estimated in Butler et al. 2007b and the last XRT observation for each event, we set a lower limit the their collimation corrected energy Eg and find that a 68% of our sample are at high enough redshift and/or low enough fluence to accommodate a jet break occurring beyond the last XRT observation and still be consistent with the pre-Swift Eg distribution for long GRBs. We find that relatively few of the X-ray light curves for the remaining events show evidence for late-time decay slopes that are consistent with that expected from post jet break emission. The breaks in the X-ray light curves that do exist tend to be shallower and occur earlier than the breaks previously observed in optical light curves, yielding a Eg distribution that is far lower than the pre-Swift distribution. If these early X-ray breaks are not due to jet effects, then a small but significant fraction of our sample have lower limits to their collimation corrected energy that place them well above the pre-Swift Eg distribution. Either scenario would necessitate a much wider post-Swift Eg distribution for long cosmological GRBs compared to the narrow standard energy deduced from pre-Swift observations. We note that almost all of the pre-Swift Eg estimates come from jet breaks detected in the optical whereas our sample is limited entirely to X-ray wavelengths, furthering the suggestion that the assumed achromaticity of jet breaks may not extend to high energies.Comment: 30 pages, 10 figures, Accepted to Ap

    A new approach to equipment testing

    Get PDF
    Considerable controversy has arisen during the recent discussions over a new version of the RTCA DO160C/ED 14C Section 22 document at the European Committee for Aviation Electronics. Section 22 is concerned with lightning waveform tests to equipment. Investigations of some of these controversies with circuit analysis and measurements indicate the impedance characteristics required of the transient generators and the possibility of testing to a voltage limit even for current waveforms

    z'-band Ground-Based Detection of the Secondary Eclipse of WASP-19b

    Get PDF
    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z'-band using the ULTRACAM triple-beam CCD camera mounted on the NTT. The measurement shows a 0.088\pm0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse centre, T0, of 2455578.7676 HJD, consistent with a circular orbit. Our measurement of the secondary eclipse depth is also compared to model atmospheres of WASP-19b, and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.Comment: 20 pages, 10 figures. Published in the ApJ Supplement serie

    DESIGN AND PERFORMANCE OF INTRA-TRAIN FEEDBACK SYSTEMS AT ATF2

    Get PDF
    The major goals of the final focus test beam line facility ATF2 are to provide electron beams with a few tens of nanometer beam sizes and beam stability control at the nanometer level. In order to achieve such a level of stability beam-based feedback systems are necessary at different timescales to correct static and dynamic effects. In particular, we present the design of intra-train feedback systems to correct the impact of fast jitter sources. We study a bunchto- bunch feedback system installed in the extraction line to combat the ring extraction transverse jitters. In addition, we design a bunch-to-bunch feedback system at the interaction point for correction of position jitter due to the fast vibration of the magnets in the final focus. Optimum feedback software algorithms are discussed and simulation results are presented

    Testing the standard fireball model of GRBs using late X-ray afterglows measured by Swift

    Get PDF
    We show that all X-ray decay curves of GRBs measured by Swift can be fitted using one or two components both of which have exactly the same functional form comprised of an early falling exponential phase followed by a power law decay. The 1st component contains the prompt gamma-ray emission and the initial X-ray decay. The 2nd component appears later, has a much longer duration and is present for ~80% of GRBs. It most likely arises from the external shock which eventually develops into the X-ray afterglow. In the remaining ~20% of GRBs the initial X-ray decay of the 1st component fades more slowly than the 2nd and dominates at late times to form an afterglow but it is not clear what the origin of this emission is. The temporal decay parameters and gamma/X-ray spectral indices derived for 107 GRBs are compared to the expectations of the standard fireball model including a search for possible "jet breaks". For ~50% of GRBs the observed afterglow is in accord with the model but for the rest the temporal and spectral indices do not conform to the expected closure relations and are suggestive of continued, late, energy injection. We identify a few possible jet breaks but there are many examples where such breaks are predicted but are absent. The time, T_a, at which the exponential phase of the 2nd component changes to a final powerlaw decay afterglow is correlated with the peak of the gamma-ray spectrum, E_peak. This is analogous to the Ghirlanda relation, indicating that this time is in some way related to optically observed break times measured for pre-Swift bursts.Comment: submitted to Ap

    Proper Motions of H-alpha filaments in the Supernova Remnant RCW 86

    Get PDF
    We present a proper motion study of the eastern shock-region of the supernova remnant RCW 86 (MSH 14-63, G315.4-2.3), based on optical observations carried out with VLT/FORS2 in 2007 and 2010. For both the northeastern and southeastern regions, we measure an average proper motion of H-alpha filaments of 0.10 +/- 0.02 arcsec/yr, corresponding to 1200 +/- 200 km/s at 2.5kpc. There is substantial variation in the derived proper motions, indicating shock velocities ranging from just below 700 km/s to above 2200 km/s. The optical proper motion is lower than the previously measured X-ray proper motion of northeastern region. The new measurements are consistent with the previously measured proton temperature of 2.3 +/- 0.3 keV, assuming no cosmic-ray acceleration. However, within the uncertainties, moderately efficient (< 27 per cent) shock acceleration is still possible. The combination of optical proper motion and proton temperature rule out the possibility that RCW 86 has a distance less than 1.5kpc. The similarity of the proper motions in the northeast and southeast is peculiar, given the different densities and X-ray emission properties of the regions. The northeastern region has lower densities and the X-ray emission is synchrotron dominated, suggesting that the shock velocities should be higher than in the southeastern, thermal X-ray dominated, region. A possible solution is that the H-alpha emitting filaments are biased toward denser regions, with lower shock velocities. Alternatively, in the northeast the shock velocity may have decreased rapidly during the past 200yr, and the X-ray synchrotron emission is an afterglow from a period when the shock velocity was higher.Comment: Accepted for publication in MNRA
    • …
    corecore