92 research outputs found

    Kleinberg Navigation on Anisotropic Lattices

    Get PDF

    Dynamic Computation of Network Statistics via Updating Schema

    Full text link
    In this paper we derive an updating scheme for calculating some important network statistics such as degree, clustering coefficient, etc., aiming at reduce the amount of computation needed to track the evolving behavior of large networks; and more importantly, to provide efficient methods for potential use of modeling the evolution of networks. Using the updating scheme, the network statistics can be computed and updated easily and much faster than re-calculating each time for large evolving networks. The update formula can also be used to determine which edge/node will lead to the extremal change of network statistics, providing a way of predicting or designing evolution rule of networks.Comment: 17 pages, 6 figure

    Communities and bottlenecks: Trees and treelike networks have high modularity

    Full text link
    Much effort has gone into understanding the modular nature of complex networks. Communities, also known as clusters or modules, are typically considered to be densely interconnected groups of nodes that are only sparsely connected to other groups in the network. Discovering high quality communities is a difficult and important problem in a number of areas. The most popular approach is the objective function known as modularity, used both to discover communities and to measure their strength. To understand the modular structure of networks it is then crucial to know how such functions evaluate different topologies, what features they account for, and what implicit assumptions they may make. We show that trees and treelike networks can have unexpectedly and often arbitrarily high values of modularity. This is surprising since trees are maximally sparse connected graphs and are not typically considered to possess modular structure, yet the nonlocal null model used by modularity assigns low probabilities, and thus high significance, to the densities of these sparse tree communities. We further study the practical performance of popular methods on model trees and on a genealogical data set and find that the discovered communities also have very high modularity, often approaching its maximum value. Statistical tests reveal the communities in trees to be significant, in contrast with known results for partitions of sparse, random graphs.Comment: 9 pages, 5 figure

    Mesoscopic structure and social aspects of human mobility

    Get PDF
    The individual movements of large numbers of people are important in many contexts, from urban planning to disease spreading. Datasets that capture human mobility are now available and many interesting features have been discovered, including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows of mobility - the sets and sequences of visited locations - have not been well studied. We show that individual mobility is dominated by small groups of frequently visited, dynamically close locations, forming primary "habitats" capturing typical daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel. Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may influence processes such as information spreading and revealing new connections between human mobility and social networks.Comment: 7 pages, 5 figures (main text); 11 pages, 9 figures, 1 table (supporting information

    Portraits of Complex Networks

    Full text link
    We propose a method for characterizing large complex networks by introducing a new matrix structure, unique for a given network, which encodes structural information; provides useful visualization, even for very large networks; and allows for rigorous statistical comparison between networks. Dynamic processes such as percolation can be visualized using animations. Applications to graph theory are discussed, as are generalizations to weighted networks, real-world network similarity testing, and applicability to the graph isomorphism problem.Comment: 6 pages, 9 figure

    Evaluating Local Community Methods in Networks

    Full text link
    We present a new benchmarking procedure that is unambiguous and specific to local community-finding methods, allowing one to compare the accuracy of various methods. We apply this to new and existing algorithms. A simple class of synthetic benchmark networks is also developed, capable of testing properties specific to these local methods.Comment: 8 pages, 9 figures, code included with sourc

    Modularity measure of networks with overlapping communities

    Get PDF
    In this paper we introduce a non-fuzzy measure which has been designed to rank the partitions of a network's nodes into overlapping communities. Such a measure can be useful for both quantifying clusters detected by various methods and during finding the overlapping community-structure by optimization methods. The theoretical problem referring to the separation of overlapping modules is discussed, and an example for possible applications is given as well

    Communities as Well Separated Subgraphs With Cohesive Cores: Identification of Core-Periphery Structures in Link Communities

    Full text link
    Communities in networks are commonly considered as highly cohesive subgraphs which are well separated from the rest of the network. However, cohesion and separation often cannot be maximized at the same time, which is why a compromise is sought by some methods. When a compromise is not suitable for the problem to be solved it might be advantageous to separate the two criteria. In this paper, we explore such an approach by defining communities as well separated subgraphs which can have one or more cohesive cores surrounded by peripheries. We apply this idea to link communities and present an algorithm for constructing hierarchical core-periphery structures in link communities and first test results.Comment: 12 pages, 2 figures, submitted version of a paper accepted for the 7th International Conference on Complex Networks and Their Applications, December 11-13, 2018, Cambridge, UK; revised version at http://141.20.126.227/~qm/papers
    corecore