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We study the Kleinberg problem of navigation in small-world networks when the underlying lattice is stretched along a preferred
direction. Extensive simulations confirm that maximally efficient navigation is attained when the length r of long-range links is
taken from the distribution P(r)∼r−α, when the exponent α is equal to 2, the dimension of the underlying lattice, regardless of
the amount of anisotropy, but only in the limit of infinite lattice size, L→∞. For finite size lattices we find an optimal α(L) that
depends strongly on L. The convergence to α = 2 as L→∞ shows interesting power-law dependence on the anisotropy strength.
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1. INTRODUCTION

The small-world phenomenon is one of the most intriguing
properties of human society. This describes the fact that
unrelated people in a society, who are a very large geographic
distance apart from one another, tend to be connected by sur-
prisingly short chains of acquaintances. This phenomenon
was hypothesized in 1929 by Hungarian author Karinthy
[1, 2] and was first observed experimentally in the 1960s
with sociologist Stanley Milgram’s seminal experiments [3],
wherein randomly chosen people were selected to mail a
letter to an unknown target person, but were only allowed
to send the letter to a friend, who would pass the letter along
to another friend, and so forth, until the target was reached.
Successful transmissions took surprisingly few intermediate
people, lending credibility to the turn of phrase “six degrees
of separation,” popularized by Karinthy. Understanding this
phenomenon is an important sociological problem.

To study the underlying mechanism that led to Milgram’s
results, computer scientist Kleinberg modeled a society as
follows [4, 5]. Begin with a large, regular square L×L lattice.
Each node is connected to its nearest lattice neighbors and to
a single random node a large distance away. The probability
of nodes i and j being connected by such a long-range
contact is

Pi j(α) =
r−αi j

∑
k /= i r

−α
ik

, (1)

where ri j is the Euclidian distance between the two nodes

and the sum runs over all nodes in the network except i.
Physically, the local lattice connections represent associations
with immediate neighbors, fellow townspeople, and so forth,
while long-range contacts might model friends or relatives in
another city or country.

We seek to pass the message from a random starting node
s to a random target t. Of great importance is the fact that
each node has no information beyond the locations of its
contacts and the target node t, so the operational algorithm
must be local in character. Kleinberg has proved that no
local algorithm can do better, functionally, than the greedy
algorithm [4]: each message holder passes the message along
to whichever of its contacts is closest to t, until the message
reaches the target. Moreover, for α /= 2, the delivery time T
(number of intermediate steps) scales as a power of L, while
small-world behavior and the weakest dependence on lattice
size emerges for α = 2, where T∼ln2L.

The distribution of nodes on a regular square lattice
is too rigid, failing to mimic important features of actual
distributions of populations (or computer routers, etc.). In
an effort to account for these, we have studied Kleinberg
navigation in fractals [6], showing that the optimal long-
contact exponent is then α = df, the fractal dimension of
the lattice. In this letter, we study the effects of anisotropy—
another commonly encountered distortion of the ideal
Kleinberg lattice. Our results indicate that in the limit of
lattice size L→∞, the optimal contact exponent for two-
dimensional lattices is still α = 2. For finite L, we find an
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Figure 1: Simulations for lattice and angle anisotropies. A horizontal scale of 1/ln2L is used throughout. All curves approach α(∞), regardless
of b. For the lattice case, there is a crossover effect where curves for b > 1 dip below the b = 1 curve. For the angular case, curves for b > 1
approach the infinite limit at differing rates, while curves for b < 1 eventually collapse onto the b = 1 curve. These phenomena are further
explored in Figure 3. See Figure 2 for the extrapolated α(∞).

optimal exponent α(L) quite different from the infinite limit.
The convergence to α = 2 as L→∞ shows interesting power-
law dependence on the anisotropy strength.

2. ANISOTROPIC LATTICES

We wish to study the isolated effect of anisotropy on
Kleinberg navigation. To do this, we begin with a regular
square lattice (d = 2) and introduce one of two forms of
anisotropy.

(i) Lattice anisotropy. The underlying lattice is stretched
horizontally, along the x -axis, by a factor b > 0, such that the
area of each cell goes from 1× 1 to b× 1.

(ii) Angular anisotropy. Long-range contacts are chosen
preferably along the vertical direction by a factor b > 0.
More precisely, the random angle θ of each long-range
contact vector (measured counter-clockwise, from the x-
axis) is modified to θ′:

θ′ = arctan (b tan θ). (2)

Both of these types of anisotropy tend to favor connec-
tions in the vertical y-direction if b > 1, and along the x-
direction if 0 < b < 1.

3. SIMULATIONS

To simulate Kleinberg navigation efficiently, we use several
tricks and approximations. First, rather than testing a finite-
size square L × L lattice, we consider an infinite lattice and
place the source and target at distance L from one another.
Since the message always progresses toward the target, by the
greedy algorithm, the message holder remains within a disc
of radius L centered on the target node, so in practice only
a finite number of sites would be explored anyway. Second,

the computation of the normalizing sum in the denominator
of (1) is dependent (in finite lattices) on the location of the
node i, and can be very time-consuming. The infinite lattice
circumvents this problem, as the normalizing constant is the
same for all nodes. Note, however, that

∑
kr
−α
ik does not con-

verge for α < d. In that case, we imagine a lattice larger than
the L-disc of activity, with periodic boundary conditions,
such that the normalizing factor is still the same for all sites.

Because of the monotonic progression toward the target
no site is ever revisited in the process. Moreover, as observed
by Kleinberg [5], one can think of the long-contact link-out
of node i as being created at the very instant that the message
arrives at i. Thus, the full lattice is unnecessary, and we need
keep in memory only the current location of the message
holder (and the location of the target). When the message
arrives at i, we create a random long contact, compare the
distances of all five neighbors of i (the four lattice neighbors
and the long contact) to the target, and move the message to
the site closest to the target.

The long contact is created by choosing a random
distance and angle, (r, θ). In order to reproduce the correct
P(ri j)∼r−αi j , the distance r is taken from the distribution
P(r)∼r−α−1, to account for the linear growth of the area
of the ring where the contact might fall. The angle θ is
distributed uniformly between 0 and 2π. In the case of
angular anisotropy, θ is replaced by θ′, according to (2).
Finally, a vector (r, θ) is drawn from site i, and the contact
is placed on the site j closest to the vector tip.

Because of the anisotropy, the angular displacement from
the source to the target makes a difference. It is sufficient to
test only the two extremes of θ = 0 and θ = π/2, where
the target is either parallel or perpendicular to the anisotropy
direction. We note, however, that anisotropy strength b and
a target at θ = 0 is equivalent to anisotropy 1/b and target at
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Figure 2: Extrapolation results for (a) lattice and (b) angular anisotropies. Extrapolating to 1/In2L→ 0 with a linear least-squares fit to the
curves in Figure 1 shows excellent convergence of α(∞) to the expected value of d = 2. Good values should occur when the curves are
flattest, which happens roughly around 0.25. A more robust fitting procedure could be used, but the accuracy of these results implies that it
is unnecessary. The horizontal lines at α = 2 provide a guide for the eye.

1018 107 105 104 103

L

0

0.01

0.02

0.03

0.04

0.05

C
u

bi
c

fi
t
p b
−
p 1

b = 64

b = 32

b = 16

b = 8

b = 4
b = 2

(a) Lattice

1018 107 105 104 103

L

−0.4

−0.3

−0.2

−0.1

0

0.1
C

u
bi

c
fi

t
p b
−
p 1

b = 1/32
b = 1/8

b = 1/2

b = 2

b = 8

b = 32

(b) Angle

Figure 3: Curves relative to the isotropic divide b = 1, for (a) lattice and (b) angular cases. To provide a measure of smoothing, cubic
polynomials pb were fitted to the curves in Figure 1. To clarify the impact of anisotropy, we show the behavior relative to the isotropic case by
subtracting p1 from each pb. This maps the isotropic curve to a horizontal line and introduces only minor distortion. The crossover behavior
for b > 1 is clearly displayed.
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Figure 4: Dependence of results on anisotropy strength b for (a) lattice and (b) angular anisotropies. The straight lines are of slopes 2 and
1/4, respectively.
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θ = π/2. For this reason, we simply set the source and target
at (0, 0) and (L, 0), respectively, throughout, and let b vary
both below and above the isotropic divide of b = 1.

Simulations were performed for various values of b over
a large range of α and L, each averaged 1000 times. For each
b and L, the minimum α was computed by first fitting a fifth-
order polynomial to the averaged data, then using Newton’s
Method on the polynomial’s derivative. (A parabola could
be fitted to the data closest to the minimum, but we must
first know what is “closest.” A higher-order polynomial
overcomes this difficulty, similar to including higher order
terms in a series expansion near the minmum of a function.)
Finally, αmin was plotted as a function of 1/ln2L for each
chosen value of b. These are shown in Figure 1 and indicate
that αmin→ 2 as L→∞, regardless of b. In Figure 2, we show
detailed results of the extrapolation to L→∞.

To further clarify the behavior shown in Figure 1,
the following procedure was performed. First, fit a cubic
polynomial pb, using least squares, to each b’s curve. Then,
subtract that polynomial from the isotropic case, pb − p1.
This maps b = 1 to the horizontal axis and gives the behavior
of the b /= 1 curves ”relative” to the isotropic curve. These are
shown in Figure 3. The different behavior for each type of
anisotropy is clear: for both types of anisotropy, the results
for b > 1 show dramatic differences from the isotropic case
of b = 1 (the differences for b < 1 and large L are negligible).
For lattice anisotropy, the b > 1 curves start above the b = 1
curve and cross below until they eventually converge at a
similar rate, as L→∞. For the angular anisotropy, the b > 1
curves approach α(∞) at a different rate than the b = 1
curve, resulting in distinctly different slopes in the plots of
Figure 1(b).

The observed “crossover” behavior present in the lattice
anisotropy is somewhat unexpected. The crossover point,
Lcrossover(b), is explored by finding the zero of each pb − p1.
These are plotted in Figure 4(a), and seem to indicate a
power-law relationship, Lcrossover(b)∼b2. Likewise, the dif-
ferent slopes for angular anisotropy, plotted in Figure 4(b),
show power-law behavior and seem to increase roughly as
b1/4. What is responsible for these phenomena remains an
open question.

4. CONCLUSIONS

We have shown, by extensive numerical simulations, that
Kleinberg navigation in two-dimensional lattices with two
types of anisotropy displays the same gross characteristics
as navigation in isotropic lattices. In particular, the optimal
long-contact exponent in the limit of infinitely distant source
and target remains α = 2, even in the presence of anisotropy.

It is worthwhile to note that the actual values for the
optimal exponent α(L) for finite L can differ considerably
from the limit α = 2, even for reasonably large lattices. Thus,
for practical applications, the optimal exponent ought to be
evaluated on a case-by-case basis.

The modes of convergence to the limit L→∞ show
intriguing power-law dependence upon the strength of
the anisotropy. A theoretical explanation for this behavior
remains the subject of future work.

APPENDIX

FINDING αmin

The analysis of the simulations hinges upon finding the
α with the smallest transit time T . Finding this value
is difficult due to small fluctuations near the minimum,
fluctuations which remain even after averaging. To overcome
this, we simply fit a least-squares polynomial curve to the
data, providing an additional degree of smoothing and
interpolation. Since the exact location of the minimum is
unknown, a quadratic polynomial may be skewed. Instead,
we chose to fit a fifth-order polynomial and find the
minimum using Newton’s method on its derivative. Since all
the minima are close to α = 2, we choose this as our initial
guess for Newton’s method. Moreover, all the data shown in
the preceding figures had clean fits.
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