847 research outputs found

    Adsorption of (Poly)vanadate onto Ferrihydrite and Hematite: An In Situ ATR–FTIR Study

    Get PDF
    Copyright © 2020 American Chemical SocietyFunding was provided by the Natural Sciences and Engineering Council of Canada (NSERC) through the Discovery Grants program (Grant no. RGPIN-2014-06589). Additional support awarded to C.J.V. was through the NSERC-Canada Graduate Scholarship-Master’s (NSERC CGS-M) Program. M.P.S. would like to acknowledge the Natural Sciences and Engineering Research Council Collaborative Research and Training Experience Sustainable Applied Fertilizer and Environmental Remediation (NSERC CREATE SAFER) program, as well as the NSERC Research and Development grant supported by Federated Cooperatives Limited for financial support.Peer ReviewedVanadium (V) has been a useful trace metal in describing Earth’s biogeochemical cycling and development of industrial processes; however, V has recently been recognized as a potential contaminant of concern. Although Fe (oxyhydr)oxides are important sinks for aqueous V in soils and sediments, our understanding of adsorption mechanisms is currently limited to mononuclear species (i.e., HxVO4(3–x)–). Here we use in situ attenuated total reflectance – Fourier transform infrared spectroscopy to examine sorption mechanisms and capacity for (poly)vanadate attenuation by ferrihydrite and hematite from pH 3 to 6. Adsorption isotherms illustrate the low affinity of polyvanadate species for ferrihydrite surfaces compared to hematite. Mononuclear V species (i.e., [HxVO4](3−x)− and VO2+) were present at all experimental conditions. At low surface loadings and pH 5 and 6, H2VO4− adsorption onto ferrihydrite and hematite surfaces results from formation of inner sphere complexes. At [V]T above 250 ”M, adsorbed polynuclear V species in this study include H2V2O72− and V4O124−. Whereas, HV10O286−, H3V10O285−, and NaHV10O284− are the predominant adsorbed species at pH 3 and 4 and elevated [V]T. Surface polymers were identified on hematite at all experimental pH values, whereas polymeric adsorption onto ferrihydrite was limited to pH 3 and 4. These results suggest that hematite offers a more suitable substrate for polymer complexation compared to ferrihydrite. Our results demonstrate the pH and concentration dependant removal of (poly)vanadate species by Fe(III) (oxyhydr)oxides, which has implications for understanding V mobility, behaviour, and fate in the environment

    Cognitive Aspects of Structured Process Modeling

    Get PDF
    After visualizing data of various observational experiments on the way in which modelers construct process models, a promising process modeling style (i.e., structured process modeling) was discovered that is expected to cause process model quality to increase. A modeler constructs process models in a structured way if she/he is working on few parts of the model simultaneously. This paper describes cognitive theories that can explain this causal relation. Cognitive Load Theory (CLT) suggests that the amount of errors increases when the limited capacity of our working memory is overloaded. Cognitive Fit Theory (CFT) states that performance is improved when task material representation matches with the task to be executed. Three hypotheses are formulated and the experimental set-up to evaluate these hypotheses is described

    Male reproductive health and environmental xenoestrogens

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314
    • 

    corecore