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Abstract. After visualizing data of various observational experiments on the 
way in which modelers construct process models, a promising process 
modeling style (i.e., structured process modeling) was discovered that is 
expected to cause process model quality to increase. A modeler constructs 
process models in a structured way if she/he is working on a limited amount of 
parts of the model simultaneously. This paper describes two cognitive theories 
that can explain this causal relation. Cognitive Load Theory (CLT) suggests 
that the amount of errors increases when the limited capacity of our working 
memory is overloaded. Cognitive Fit Theory (CFT) states that performance is 
improved when task material representation matches with the task to be 
executed. Three hypotheses are formulated and the experimental set-up to 
evaluate these hypotheses is described. 

Keywords: business process modeling, process of process modeling, structured 
process modeling 

1 Introduction 

Between 2009 and 2012 several observational experiments were performed to study 
different characteristics of how subjects create process models (e.g., [1–9]). The focus 
was on relating properties of the process of process modeling to specific 
characteristics of, for example, a case description [6], the modeler [7], and the 
modeling result (i.e., the constructed process model) [4]. Therefore, every activity on 
the modeling canvas was recorded (e.g., create_activity, create_edge, move_activity, 
etc.) [1]. We were granted access to the data of these experiments to be able to study 
them in detail with the use of process mining techniques. 

We developed a way to visualize in a more accessible way the raw, uninterpreted 
data of single process modeling instances: The PPMChart [2] displays the recorded 
data of the modeling process for one modeling session (see Fig. 1). Each process 
model element that existed during the modeling process is represented by a horizontal 
time line. These lines are vertically sorted according to the order a liquid would reach 
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the elements of the process model if it is converted into a flow network. On every 
line, the operations on the element it represents are displayed as colored dots that are 
placed according to the time of their occurrence. The color of the dot represents the 
operation on the element (e.g., create_activity in bright green, create_edge in blue-
green, create_gateway in dark green, etc.) 

 

 
Fig. 1. Example of a PPMChart  

Next, to be able to graphically discover reoccurring patterns, various PPMCharts 
were compared [2]. Each chart was supplemented with the quality measurement of the 
resulting process model (i.e., mainly soundness [10]). Three conjectures were 
formulated about the relation of specific properties of the modeling process to the 
quality of the resulting process model [4]. One of these conjectures involves the 
concept of structured process modeling. We call a modeling session highly structured 
if the modeler is working on a limited amount of process model blocks at the same 
time [4]. A process model block is defined as the collection of elements in two or 
more optional or parallel paths in the process model: i.e., a split construct, a matching 
join construct and all according nodes and edges of different paths between both 
routing constructs (see for example highlighted part of Fig. 1) [4]. The more process 
model blocks that are simultaneously under construction, the lower the degree of 
structuredness of the modeling process. 

In every dataset we studied, we discovered a highly significant non trivial relation 
between the degree of structured process modeling and the quality of the resulting 
process model [4]. Therefore, we will try (i) to explain why a structured process 
modeling style could lead to high process model quality, and (ii) to prove that a 
structured process modeling style causes higher process model quality. We refer to [4] 
for an overview of the metrics we use for the degree of structured process modeling 
and process model quality. 
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2 Theory 

In order to be able to explain why a structured process modeling style could lead to a 
higher quality of the resulting process model, in this section cognitive aspects of the 
processing capabilities of the human brain are addressed.  

According to [11] people have three types of memory: sensory memory, working 
memory, and long-term memory (see Fig. 2). People’s observations are firstly stored 
in the sensory memory for a very short period after which a selection of the 
information is automatically and unconsciously redirected to the working memory 
[12]. Next, the information is complemented with existing information from the long-
term memory which results in the storage of newly formed long-term information 
(i.e., transfer) and/or directly leads to specific performances (i.e., reflexes) [13]. For 
the construction of a process model, the information about observations concerning 
the process to be modeled is recollected in the working memory (i.e., organization) 
and combined with other useful knowledge from the long-term memory (i.e., 
retrieval). Examples of useful knowledge in the long-term memory are domain 
knowledge, knowledge about modeling, about the modeling language, etc. 

 
Fig. 2. Sensory memory, working memory and long-term memory 

The working memory has a limited capacity of seven plus or minus two ‘chunks’ 
of information [14]. The amount of information stored in one chunk depends on the 
expertise of the subject on the specific task. Our long-term memory is structured in 
schemas that consist of connected pieces of information. People considered experts at 
a certain task, generally store more information (larger schemas) and have more 
efficient access to this information (well-structured and well-connected schemas) 
[15]. Therefore, they can store more information in a single chunk of working 
memory (one schema of an expert provides access to more information than a 
novice’s schema). Thus, everybody’s working memory has about the same capacity, 
but differences are related to how efficiently people use the limited working memory. 

The efficiency with which our working memory is used is determined by the 
cognitive load of performing a task [15]. Three types of cognitive load exist: (i) 
intrinsic cognitive load (i.e., the amount of information needed to perform the task, 
depending on the task), (ii) extraneous cognitive load (i.e., the amount of information 
needed to interpret the input, depending on the representation of the task data), and 
(iii) germane cognitive load (i.e., the remaining amount of information the subject 
needs to load in the working memory for performing the task, mainly depending on 
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the expertise of the subject) [13]. CLT suggests that when people encounter a 
shortage of working memory they tend to make mistakes [15]. 

For a particular task and a particular task material representation, only the germane 
cognitive load influences people’s performance in the execution of the task. 
Moreover, as discussed before, experts occupy less working memory than novices to 
cover this germane cognitive load. However, it is not practical to only focus on the 
expertise of a subject in task performance to increase her/his effectiveness and 
efficiency, because training a novice to become an expert takes time. Hence, a 
technique that reduces the necessary amount of information to be stored at the same 
time in the working memory, is an appropriate candidate to improve a human’s 
effectiveness and efficiency to perform a certain task.  

Structured process modeling is a technique that encourages modelers to work on 
few elements of the process model at the same time. Therefore, we argue that less 
working memory capacity is needed to model in this way than when working on 
several parts of the model simultaneously. This explains why structured process 
modeling can cause process model quality increase. Requiring less working memory 
capacity reduces the chance of making errors [15] and leaves more space for other 
activities (e.g., lay-out), which, in turn, causes quality improvement [16]. 

 
There is another cognitive theory that influences the result of a modeling task. The 

Cognitive Fit Theory states that when the task material representation fits with the 
task to be executed, people tend to be more effective and more efficient in executing 
the task [17]. For example, a table representation of data is argued to fit better for 
solving questions that ask about facts, and a graph representation fits better for 
questions about insightful information derived from the data [18]. 

Previous research indicates that a breadth-first ordering, according to the process 
model to be constructed, of the descriptions of activities is related to a higher model 
correctness than a depth-first or random ordering [6]. Note that the structured process 
modeling technique is similar to a breadth-first modeling approach (i.e., first finish 
parallel paths (breadth) before working on the consecutive parts (depth). Therefore, 
we suspect that a breadth-first ordering of the task description, in combination with a 
modeling style akin to breadth-first modeling (i.e., structured process modeling), 
provides the benefits of cognitive fit, and would thus consolidate the effect of 
structured process modeling on process model quality. 

3 Hypotheses 

The discussed observations (in Section 1) and theories (in Section 2) inspired us to 
formulate next three hypotheses: 

H1: Structured process modeling relates to process model quality improvement. 
H2: The quality improvement will be higher for novices than for experts 

(expertise in the case domain, in modeling, and/or in the modeling language). 
H3: The quality improvement will be higher if the task representation fits with 

the technique (i.e., a breadth-first ordering of the task description). 
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4 Research method 

In order to be able to corroborate the hypotheses, we plan to perform a double-blind, 
randomized, controlled experiment (see Fig. 3). The targeted subjects are a group of 
150 master students that take a Business Process Management course. The students 
will be randomly appointed to a treatment and a control group. The treatment group 
(T) will be instructed to model using the structured process modeling style. The 
control group (C) will have a fake treatment (half of them get no instructions, half of 
them learn a technique that can be considered as depth-first modeling). In each group 
(T and C) an equal amount of participants will receive a breadth-first sorted, a depth-
first sorted, and a randomly sorted task description.  

The session will start with a short tool tutorial and a pre-test case to determine 
initial degree of structured process modeling (ST1, SC1) and process model quality 
(QT1, QC1). Next, the instructions of the treatment and fake treatment will be given. 
Finally, the experiment case has to be solved by the participants and the altered 
degree of structured process modeling (ST2, SC2) and process model quality (QT2, 
QC2) will be measured. We can check if the treatment had effect through the 
comparison of the degree of structured process modeling before and after treatment.  

The hypotheses can be evaluated using the process model quality measurements in 
different subgroups before and after the treatment. To investigate H1, the results of T 
and C should be compared (75 students each). H2 can only be studied if there are 
enough domain experts for the particular cases among the students or by comparing to 
results from new experiments with more experienced subjects. For H3, the students 
from T with a breadth-first ordered text (25 students) can be compared to the other 
students in T (50 students), and with the part from C that has received a depth-first 
ordered text and the depth-first modeling instructions (13 students). 

 
 

 
Fig. 3. Experiment set-up (S: structuredness, Q: quality, T: treatment group, C: control group) 
Fake treatment: depth-first modeling in one session (Ca), extra exercise in other session (Cb) 
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