8,916 research outputs found

    Anisotropic In-Plane Strain and Transport in Epitaxial Nd(0.2)Sr(0.8)MnO(3) Thin Films

    Full text link
    The structure, morphology, and electrical properties of epitaxial a-axis oriented thin films of Nd(0.2)Sr(0.8)MnO(3) are reported for thicknesses 10 nm <= t <= 150 nm. Films were grown with both tensile and compressive strain on various substrates. It is found that the elongated crystallographic c-axes of the films remain fully strained to the substrates for all thicknesses in both strain states. Relaxation of the a and b axes is observed for t>= 65 nm with films grown under tensile strain developing uniaxial crack arrays (running along the c axis) due to a highly anisotropic thermal expansion. For the latter films, the room-temperature in-plane electrical resistivity anisotropy, rho_b/rho_c, increases approximately exponentially with increasing film thickness to values of ~1000 in the thickest films studied. Films under tension have their Neel temperatures enhanced by ~25 K independent of thickness, consistent with an enhancement of ferromagnetic exchange along their expanded c axes.Comment: 14 pp., 9 Fig.

    Scalable Text and Link Analysis with Mixed-Topic Link Models

    Full text link
    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.Comment: 11 pages, 4 figure

    Low-Temperature Permittivity of Insulating Perovskite Manganites

    Full text link
    Measurements of the low-frequency (f<=100 kHz) permittivity and conductivity at T<= 150 K are reported for La(1-x)Ca(x)MnO(3) (0<=x<=1) and Ca(1-y)Sr(y)MnO(3) (0<=y<=0.75) having antiferromagnetic, insulating ground states covering a broad range of Mn valencies from Mn(3+) to Mn(4+). Static dielectric constants are determined from the low-T limiting behavior. With increasing T, relaxation peaks associated with charge-carrier hopping are observed in the real part of the permittivities and analyzed to determine dopant binding energies. The data are consistent with a simple model of hydrogenic impurity levels and imply effective masses m*/m_e~3 for the Mn(4+) compounds. Particularly interesting is a large dielectric constant (~100) associated with the C-type antiferromagnetic state near the composition La(0.2)Ca(0.8)MnO(3).Comment: 6 pages, 8 figures, PRB in pres

    John H. Gibbon, Jr., M.D.: surgical innovator, pioneer, and inspiration.

    Get PDF
    Throughout history there have been many discoveries that have changed the world, including Albert Einstein’s theory of relativity, Alexander Graham Bell’s telephone, and Jack Kilby and Robert Noyce’s microchip. There are a few analogous contributions that have been made in medicine: Sir Alexander’s discovery of penicillin, Lister’s principles of antiseptic technique, Salk and Sabin’s vaccines for polio, as well as numerous others. These innovative thinkers all had two factors in common. First, they were pioneers who faced problems that had no solutions at the time and who refused to accept the status quo in the face of great scrutiny and resistance. Second, their contributions would forever change the world. In 1930, a profound experience with a patient would forever change Dr. John H. Gibbon, Jr. and stimulate an idea to create a device that at the time sounded audacious and impossible. His device would temporarily take the role of both the heart and lungs to make repairs inside the heart or the great vessels. Twentythree years later, Dr. Gibbon used his machine to perform the first successful bypass-assisted open heart surgery

    Stoichiometry, structure, and transport in the quasi-one-dimensional metal, Li(0.9)Mo(6)O(17)

    Get PDF
    A correlation between lattice parameters, oxygen composition, and the thermoelectric and Hall coefficients is presented for single-crystal Li(0.9)Mo(6)O(17), a quasi-one-dimensional (Q1D) metallic compound. The possibility that this compound is a compensated metal is discussed in light of a substantial variability observed in the literature for these transport coefficients.Comment: 5 pages, 4 Figures; Phys. Rev. B (in press

    Addendum: "The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models" (ApJ, 481, 267 [1997])

    Full text link
    It has recently come to our attention that there are axis scale errors in three of the figures of Dull et al. (1997, hereafter D97). D97 presented Fokker-Planck models for the collapsed-core globular cluster M15 that include a dense, centrally concentrated population of neutron stars and massive white dwarfs, but do not include a central black hole. In this Addendum, we present corrected versions of Figures 9, 10, and 12, and an expanded version of Figure 6. This latter figure, which shows the full run of the velocity dispersion profile, indicates that the D97 model predictions are in good agreement with the moderately rising HST-STIS velocity dispersion profile for M15 reported by Gerssen et al. (2002, astro-ph/0209315). Thus, a central black hole is not required to fit the new STIS velocity measurements, provided that there is a sufficient population of neutron stars and massive white dwarfs. This conclusion is consistent with the findings of Gerssen et al. (2002, astro-ph/0210158), based on a reapplication of their Jeans equation analysis using the corrected mass-to-light profile (Figure 12) for the D97 models.Comment: 4 pages, 4 figures, submitted to Ap

    Hole Localization in Underdoped Superconducting Cuprates Near 1/8th Doping

    Full text link
    Measurements of thermal conductivity versus temperature over a broad range of doping in YBa2_2Cu3_3O6+x_{6+x} and HgBa2_2Can−1_{n-1}Cun_nO2n+2+δ_{2n+2+\delta} (nn=1,2,3) suggest that small domains of localized holes develop for hole concentrations near pp=1/8. The data imply a mechanism for localization that is intrinsic to the CuO2_2-planes and is enhanced via pinning associated with oxygen-vacancy clusters.Comment: 4 pages, 4 eps fig.'s, to be published, Phys. Rev.

    Doping Dependence of Polaron Hopping Energies in La(1-x)Ca(x)MnO(3) (0<= x<= 0.15)

    Full text link
    Measurements of the low-frequency (f<= 100 kHz) permittivity at T<= 160 K and dc resistivity (T<= 430 K) are reported for La(1-x)Ca(x)MnO(3) (0<= x<= 0.15). Static dielectric constants are determined from the low-T limiting behavior of the permittivity. The estimated polarizability for bound holes ~ 10^{-22} cm^{-3} implies a radius comparable to the interatomic spacing, consistent with the small polaron picture established from prior transport studies near room temperature and above on nearby compositions. Relaxation peaks in the dielectric loss associated with charge-carrier hopping yield activation energies in good agreement with low-T hopping energies determined from variable-range hopping fits of the dc resistivity. The doping dependence of these energies suggests that the orthorhombic, canted antiferromagnetic ground state tends toward an insulator-metal transition that is not realized due to the formation of the ferromagnetic insulating state near Mn(4+) concentration ~ 0.13.Comment: PRB in press, 5 pages, 6 figure
    • …
    corecore