154 research outputs found
Distinctive Features of Saccadic Intrusions and Microsaccades in Progressive Supranuclear Palsy
International audience; The eyes do not stay perfectly still during attempted fixation; fixational eye movements and saccadic intrusions (SIs) continuously change the position of gaze. The most common type of SI, square-wave jerks (SWJs), consists of saccade pairs that appear purely horizontal on clinical inspection: the first saccade moves the eye away from the fixation target, and after a short interval, the second saccade brings it back toward the target. SWJs are prevalent in certain neurological disorders, including progressive supranuclear palsy (PSP). Here, we developed an objective method to identify SWJs. We found that SWJs are more frequent, larger, and more markedly horizontal in PSP patients than in healthy human subjects. Furthermore, the loss of a vertical component in fixational saccades and SWJs was the eye movement feature that best distinguished PSP patients from controls. We moreover determined that, in PSP patients and controls, the larger the saccade the more likely it was part of a SWJ. Furthermore, saccades produced by PSP patients had equivalent properties whether they were part of a SWJ or not, suggesting that normal fixational saccades (microsaccades) are rare in PSP. We propose that fixational saccades and SIs are generated by the same neural circuit and that, both in PSP patients and in controls, SWJs result from a coupling mechanism that generates a second corrective saccade shortly after a large fixation saccade. Because of brainstem and/or cerebellum impairment, fixational saccades in PSP are abnormally large and thus more likely to trigger a corrective saccade, giving rise to SWJs
Abnormal Capillary Vasodynamics Contribute to Ictal Neurodegeneration in Epilepsy
Seizure-driven brain damage in epilepsy accumulates over time, especially in the hippocampus, which can lead to sclerosis, cognitive decline, and death. Excitotoxicity is the prevalent model to explain ictal neurodegeneration. Current labeling technologies cannot distinguish between excitotoxicity and hypoxia, however, because they share common molecular mechanisms. This leaves open the possibility that undetected ischemic hypoxia, due to ictal blood flow restriction, could contribute to neurodegeneration previously ascribed to excitotoxicity. We tested this possibility with Confocal Laser Endomicroscopy (CLE) and novel stereological analyses in several models of epileptic mice. We found a higher number and magnitude of NG2+ mural-cell mediated capillary constrictions in the hippocampus of epileptic mice than in that of normal mice, in addition to spatial coupling between capillary constrictions and oxidative stressed neurons and neurodegeneration. These results reveal a role for hypoxia driven by capillary blood flow restriction in ictal neurodegeneration
Imaging Disk Distortion of Be Binary System δ Scorpii near Periastron
The highly eccentric Be binary system δ Sco reached periastron during early 2011 July, when the distance between the primary and secondary was a few times the size of the primary disk in the H band. This opened a window of opportunity to study how the gaseous disks around Be stars respond to gravitational disturbance. We first refine the binary parameters with the best orbital phase coverage data from the Navy Precision Optical Interferometer. Then we present the first imaging results of the disk after the periastron, based on seven nights of five telescope observations with the MIRC combiner at the CHARA array. We found that the disk was inclined 27 ##IMG## [http://ej.iop.org/icons/Entities/fdg.gif] {fdg 6 ± 6 ##IMG## [http://ej.iop.org/icons/Entities/fdg.gif] {fdg 0 from the plane of the sky, had a half-light radius of 0.49 mas (2.2 stellar radii), and consistently contributed 71.4% ± 2.7% of the total flux in the H band from night to night, suggesting no ongoing transfer of material into the disk during the periastron. The new estimation of the periastron passage is UT 2011 July 3 07:00 ± 4:30. Re-analysis of archival VLTI-AMBER interferometry data allowed us to determine the rotation direction of the primary disk, constraining it to be inclined either ~119° or ~171° relative to the orbital plane of the binary system. We also detect inner disk asymmetries that could be explained by spot-like emission with a few percent of the disk total flux moving in Keplerian orbits, although we lack sufficient angular resolution to be sure of this interpretation and cannot yet rule out spiral density waves or other more complicated geometries.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98576/1/0004-637X_757_1_29.pd
Abnormal Capillary Vasodynamics Contribute to Ictal Neurodegeneration in Epilepsy
Seizure-driven brain damage in epilepsy accumulates over time, especially in the hippocampus, which can lead to sclerosis, cognitive decline, and death. Excitotoxicity is the prevalent model to explain ictal neurodegeneration. Current labeling technologies cannot distinguish between excitotoxicity and hypoxia, however, because they share common molecular mechanisms. This leaves open the possibility that undetected ischemic hypoxia, due to ictal blood flow restriction, could contribute to neurodegeneration previously ascribed to excitotoxicity. We tested this possibility with Confocal Laser Endomicroscopy (CLE) and novel stereological analyses in several models of epileptic mice. We found a higher number and magnitude of NG2+ mural-cell mediated capillary constrictions in the hippocampus of epileptic mice than in that of normal mice, in addition to spatial coupling between capillary constrictions and oxidative stressed neurons and neurodegeneration. These results reveal a role for hypoxia driven by capillary blood flow restriction in ictal neurodegeneration
Deep Eyedentification: Biometric Identification using Micro-Movements of the Eye
We study involuntary micro-movements of the eye for biometric identification.
While prior studies extract lower-frequency macro-movements from the output of
video-based eye-tracking systems and engineer explicit features of these
macro-movements, we develop a deep convolutional architecture that processes
the raw eye-tracking signal. Compared to prior work, the network attains a
lower error rate by one order of magnitude and is faster by two orders of
magnitude: it identifies users accurately within seconds
Visual Exploration and Object Recognition by Lattice Deformation
Mechanisms of explicit object recognition are often difficult to investigate and require stimuli with controlled features whose expression can be manipulated in a precise quantitative fashion. Here, we developed a novel method (called “Dots”), for generating visual stimuli, which is based on the progressive deformation of a regular lattice of dots, driven by local contour information from images of objects. By applying progressively larger deformation to the lattice, the latter conveys progressively more information about the target object. Stimuli generated with the presented method enable a precise control of object-related information content while preserving low-level image statistics, globally, and affecting them only little, locally. We show that such stimuli are useful for investigating object recognition under a naturalistic setting – free visual exploration – enabling a clear dissociation between object detection and explicit recognition. Using the introduced stimuli, we show that top-down modulation induced by previous exposure to target objects can greatly influence perceptual decisions, lowering perceptual thresholds not only for object recognition but also for object detection (visual hysteresis). Visual hysteresis is target-specific, its expression and magnitude depending on the identity of individual objects. Relying on the particular features of dot stimuli and on eye-tracking measurements, we further demonstrate that top-down processes guide visual exploration, controlling how visual information is integrated by successive fixations. Prior knowledge about objects can guide saccades/fixations to sample locations that are supposed to be highly informative, even when the actual information is missing from those locations in the stimulus. The duration of individual fixations is modulated by the novelty and difficulty of the stimulus, likely reflecting cognitive demand
Overt Visual Attention as a Causal Factor of Perceptual Awareness
Our everyday conscious experience of the visual world is fundamentally shaped by the interaction of overt visual attention and object awareness. Although the principal impact of both components is undisputed, it is still unclear how they interact. Here we recorded eye-movements preceding and following conscious object recognition, collected during the free inspection of ambiguous and corresponding unambiguous stimuli. Using this paradigm, we demonstrate that fixations recorded prior to object awareness predict the later recognized object identity, and that subjects accumulate more evidence that is consistent with their later percept than for the alternative. The timing of reached awareness was verified by a reaction-time based correction method and also based on changes in pupil dilation. Control experiments, in which we manipulated the initial locus of visual attention, confirm a causal influence of overt attention on the subsequent result of object perception. The current study thus demonstrates that distinct patterns of overt attentional selection precede object awareness and thereby directly builds on recent electrophysiological findings suggesting two distinct neuronal mechanisms underlying the two phenomena. Our results emphasize the crucial importance of overt visual attention in the formation of our conscious experience of the visual world
Author correction: Minimal reporting guideline for research involving eye tracking (2023 edition)
No abstract available
- …