13 research outputs found
STM observation of electronic wave interference effect in finite-sized graphite with dislocation-network structures
Superperiodic patterns near a step edge were observed by STM on
several-layer-thick graphite sheets on a highly oriented pyrolitic graphite
substrate, where a dislocation network is generated at the interface between
the graphite overlayer and the substrate. Triangular- and rhombic-shaped
periodic patterns whose periodicities are around 100 nm were observed on the
upper terrace near the step edge. In contrast, only outlines of the patterns
similar to those on the upper terrace were observed on the lower terrace. On
the upper terrace, their geometrical patterns gradually disappeared and became
similar to those on the lower terrace without any changes of their periodicity
in increasing a bias voltage. By assuming a periodic scattering potential at
the interface due to dislocations, the varying corrugation amplitudes of the
patterns can be understood as changes in LDOS as a result of the beat of
perturbed and unperturbed waves, i.e. the interference in an overlayer. The
observed changes in the image depending on an overlayer height and a bias
voltage can be explained by the electronic wave interference in the ultra-thin
overlayer distorted under the influence of dislocation-network structures.Comment: 8 pages; 6 figures; Paper which a part of cond-mat/0311068 is
disscussed in detai
Moiré patterns observed in bi layer graphene irradiated with high energetic protons
Customarily, it is likely that irradiated graphene yield indication of per- turbations induced by irradiation. High Resolution Transmission Electron Micros- copy (HRTEM) analysis has been performed on proton irradiated graphene. The analysis indicates the existence of Moiré patterns produced by the rotations induced by the irradiation in between planes. The rotations measured fluctuate between 3 and 5 degrees respectively. These rotations may influence the electronic properties of the material under investigation. In order to explain the observed rotations in between planes, theoretical analysis were performed under the scheme of extended Hückel tight-binding method. Average total energy of the system was careful ana- lyzed throughout the experiment composed of two graphene layers with two carbon vacancies and then the replaced carbons were intercalated in between the two lay- ers. The results obtained indicate that the system remain semi metallic. Moreover, the theoretical results yielded that the 3 degree rotation is favored, although the 5 degree rotation is not discarded. Furthermore, energy bands as well as total and projected DOS were performed in order to provide more information about the electronic changes induced by the rotations applied to the system
Morphology of sputtering damage on Cu(111) studied by scanning tunneling microscopy
Item does not contain fulltex