4,693 research outputs found

    The Look of Silence

    Get PDF
    The Look of Silence is Joshua Oppenheimer’s powerful companion piece to the Oscar®-nominated The Act of Killing. Through Oppenheimer’s footage of perpetrators of the 1965 Indonesian genocide, a family of survivors discovers how their son was murdered, as well as the identities of the killers. The documentary focuses on the youngest son, an optometrist named Adi, who decides to break the suffocating spell of submission and terror by doing something unimaginable in a society where the murderers remain in power: he confronts the men who killed his brother and, while testing their eyesight, asks them to accept responsibility for their actions. This unprecedented film initiates and bears witness to the collapse of fifty years of silence

    Acts of Killing

    Get PDF
    Oppenheimer presents Acts of Killing, a major 14-screen video installation at the Danish Film Institute. The project emerged from Joshua Oppenheimer’s research in the 1965-66 genocide, and performative documentary methods (2001-2005). Oppenheimer served as editor, cinematographer, camera operator, and was creatively responsible for all aspects of research, production, editing, and postproduction

    Non-equilibrium chemistry and cooling in the diffuse interstellar medium - I. Optically thin regime

    Full text link
    An accurate treatment of the multiphase interstellar medium (ISM) in hydrodynamic galaxy simulations requires that we follow not only the thermal evolution of the gas, but also the evolution of its chemical state, including its molecular chemistry, without assuming chemical (including ionisation) equilibrium. We present a reaction network that can be used to solve for this thermo-chemical evolution. Our model follows the evolution of all ionisation states of the 11 elements that dominate the cooling rate, along with important molecules such as H2 and CO, and the intermediate molecular species that are involved in their formation (20 molecules in total). We include chemical reactions on dust grains, thermal processes involving dust, cosmic ray ionisation and heating and photochemical reactions. We focus on conditions typical for the diffuse ISM, with densities of 10^-2 cm^-3 < nH < 10^4 cm^-3 and temperatures of 10^2 K < T < 10^4 K, and we consider a range of radiation fields, including no UV radiation. In this paper we consider only gas that is optically thin, while paper II considers gas that becomes shielded from the radiation field. We verify the accuracy of our model by comparing chemical abundances and cooling functions in chemical equilibrium with the photoionisation code Cloudy. We identify the major coolants in diffuse interstellar gas to be CII, SiII and FeII, along with OI and H2 at densities nH > 10^2 cm^-3. Finally, we investigate the impact of non-equilibrium chemistry on the cooling functions of isochorically or isobarically cooling gas. We find that, at T < 10^4 K, recombination lags increase the electron abundance above its equilibrium value at a given temperature, which can enhance the cooling rate by up to two orders of magnitude. The cooling gas also shows lower H2 abundances than in equilibrium, by up to an order of magnitude.Comment: 26 pages, 13 figures, accepted for publication in MNRAS. Corrected an error in figure 2. Supplementary material can be found at http://noneqism.strw.leidenuniv.n

    NICMOS2 hubble space telescope observations of the embedded cluster associated with Mon R2: Constraining the substellar initial mass function

    Get PDF
    We have analyzed Hubble Space Telescope NICMOS2 F110W-, F160W-, F165M-, and F207M-band images covering the central 1' × 1' region of the cluster associated with Mon R2 in order to constrain the initial mass function (IMF) down to 20M_J. The flux ratio between the F165M and F160W bands was used to measure the strength of the water-band absorption feature and select a sample of 12 out of the total sample of 181 objects that have effective temperatures between 2700 and 3300 K. These objects are placed in the H-R diagram together with sources observed by Carpenter et al. to estimate an age of ~1 Myr for the low-mass cluster population. By constructing extinction-limited samples, we are able to constrain the IMF and the fraction of stars with a circumstellar disk in a sample that is 90% complete for both high- and low-mass objects. For stars with estimated masses between 0.1 and 1.0 M_☉ for a 1 Myr population with A_V ≤ 19 mag, we find that 27% ± 9% have a near-infrared excess indicative of a circumstellar disk. The derived fraction is similar to or slightly lower than the fraction found in other star-forming regions of comparable age. We constrain the number of stars in the mass interval 0.08-1.0 M_☉ to the number of objects in the mass interval 0.02-0.08 M_☉ by forming the ratio R^(**) = N(0.08-1 M_☉)/N(0.02-0.08 M_☉) for objects in an extinction-limited sample complete for A_V ≤ 7 mag. The ratio is found to be R^(**) = 2.2 ± 1.3, assuming an age of 1 Myr, consistent with the similar ratio predicted by the system IMF proposed by Chabrier. The ratio is similar to the ratios observed toward the Orion Nebula Cluster and IC 348, as well as the ratio derived in the 28 deg^2 survey of Taurus by Guieu et al

    On the Limitations of the Theory of the Positron

    Get PDF
    In a recent paper Dirac has suggested a further development of his theory of the positron. Dirac here considers the operators corresponding to charge and current density for a system of electrons in which nearly all the negative energy states are full, and shows that in the presence of an arbitrary external electromagnetic field these operators may be divided into two terms: one of these is infinite, and depends on the field but not on the state of the electrons; the other is finite and determinate, and depends on the field and on the electron state. Dirac makes the suggestion that these second terms be regarded as giving the charge and current density of the electron-positron distribution (epd): i.e., that the formalism of his theory of the electron be modified by the subtraction from the operators for charge and current density of the infinite and field-dependent terms. This modification leaves unaltered the Lorentz and gauge invariance of the theory and the validity of the conservation law for charge and current. Because, however, the way in which the operators are to be modified depends upon the value of the electromagnetic field, the method is not readily extended to take account of the field produced by the epd; on the other hand, it gives for the charge and current induced in the epd by an external field finite and definite results, and thus constitutes in this respect a true theoretical advance

    Non-equilibrium chemistry and cooling in the diffuse interstellar medium - II. Shielded gas

    Get PDF
    We extend the non-equilibrium model for the chemical and thermal evolution of diffuse interstellar gas presented in Richings et al. to account for shielding from the UV radiation field. We attenuate the photochemical rates by dust and by gas, including absorption by HI, H2, HeI, HeII and CO where appropriate. We then use this model to investigate the dominant cooling and heating processes in interstellar gas as it becomes shielded from the UV radiation. We consider a one-dimensional plane-parallel slab of gas irradiated by the interstellar radiation field, either at constant density and temperature or in thermal and pressure equilibrium. The dominant thermal processes tend to form three distinct regions in the clouds. At low column densities, cooling is dominated by ionized metals such as Si II, FeII, FeIII and C II, which are balanced by photoheating, primarily from HI. Once the hydrogen-ionizing radiation becomes attenuated by neutral hydrogen, photoelectric dust heating dominates, while C II becomes dominant for cooling. Finally, dust shielding triggers the formation of CO and suppresses photoelectric heating. The dominant coolants in this fully shielded region are H2 and CO. The column density of the HI-H2 transition predicted by our model is lower at higher density (or at higher pressure for gas clouds in pressure equilibrium) and at higher metallicity, in agreement with previous photodissociation region models. We also compare the HI-H2 transition in our model to two prescriptions for molecular hydrogen formation that have been implemented in hydrodynamic simulations
    • …
    corecore