15,179 research outputs found
Statistical Properties of Fermionic Molecular Dynamics
Statistical properties of Fermionic Molecular Dynamics are studied. It is
shown that, although the centroids of the single--particle wave--packets follow
classical trajectories in the case of a harmonic oscillator potential, the
equilibrium properties of the system are the quantum mechanical ones. A system
of weakly interacting fermions as well as of distinguishable particles is found
to be ergodic and the time--averaged occupation probabilities approach the
quantum canonical ones of Fermi--Dirac and Boltzmann statistics, respectively.Comment: 16 pages, several postscript figures, uses 'epsfig.sty'. More
information is available at http://www.gsi.de/~schnack/fmd.htm
Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation
On the basis of the antisymmetrized molecular dynamics (AMD) of wave packets
for the quantum system, a novel model (called AMD-V) is constructed by the
stochastic incorporation of the diffusion and the deformation of wave packets
which is calculated by Vlasov equation without any restriction on the one-body
distribution. In other words, the stochastic branching process in molecular
dynamics is formulated so that the instantaneous time evolution of the averaged
one-body distribution is essentially equivalent to the solution of Vlasov
equation. Furthermore, as usual molecular dynamics, AMD-V keeps the many-body
correlation and can naturally describe the fluctuation among many channels of
the reaction. It is demonstrated that the newly introduced process of AMD-V has
drastic effects in heavy ion collisions of 40Ca + 40Ca at 35 MeV/nucleon,
especially on the fragmentation mechanism, and AMD-V reproduces the
fragmentation data very well. Discussions are given on the interrelation among
the frameworks of AMD, AMD-V and other microscopic models developed for the
nuclear dynamics.Comment: 26 pages, LaTeX with revtex and epsf, embedded postscript figure
Antisymmetrized molecular dynamics with quantum branching processes for collisions of heavy nuclei
Antisymmetrized molecular dynamics (AMD) with quantum branching processes is
reformulated so that it can be applicable to the collisions of heavy nuclei
such as Au + Au multifragmentation reactions. The quantum branching process due
to the wave packet diffusion effect is treated as a random term in a
Langevin-type equation of motion, whose numerical treatment is much easier than
the method of the previous papers. Furthermore a new approximation formula,
called the triple-loop approximation, is introduced in order to evaluate the
Hamiltonian in the equation of motion with much less computation time than the
exact calculation. A calculation is performed for the Au + Au central
collisions at 150 MeV/nucleon. The result shows that AMD almost reproduces the
copious fragment formation in this reaction.Comment: 24 pages, 5 figures embedde
Nucleon Flow and Fragment Flow in Heavy Ion Reactions
The collective flow of nucleons and that of fragments in the 12C + 12C
reaction below 150 MeV/nucleon are calculated with the antisymmetrized version
of molecular dynamics combined with the statistical decay calculation. Density
dependent Gogny force is used as the effective interaction. The calculated
balance energy is about 100 MeV/nucleon, which is close to the observed value.
Below the balance energy, the absolute value of the fragment flow is larger
than that of nucleon flow, which is also in accordance with data. The
dependence of the flow on the stochastic collision cross section and its origin
are discussed. All the results are naturally understood by introducing the
concept of two components of flow: the flow of dynamically emitted nucleons and
the flow of the nuclear matter which contributes to both the flow of fragments
and the flow of nucleons due to the statistical decay.Comment: 20 pages, PostScript figures, LaTeX with REVTeX and EPSF, KUNS 121
Fragmentation paths in dynamical models
We undertake a quantitative comparison of multi-fragmentation reactions, as
modeled by two different approaches: the Antisymmetrized Molecular Dynamics
(AMD) and the momentum-dependent stochastic mean-field (SMF) model. Fragment
observables and pre-equilibrium (nucleon and light cluster) emission are
analyzed, in connection to the underlying compression-expansion dynamics in
each model. Considering reactions between neutron-rich systems, observables
related to the isotopic properties of emitted particles and fragments are also
discussed, as a function of the parametrization employed for the isovector part
of the nuclear interaction. We find that the reaction path, particularly the
mechanism of fragmentation, is different in the two models and reflects on some
properties of the reaction products, including their isospin content. This
should be taken into account in the study of the density dependence of the
symmetry energy from such collisions.Comment: 11 pages, 13 figures, submitted to Phys. Rev.
Where do manufacturing firms locate their headquarters?
Firmsâ headquarters [HQ] support their production activity, by gathering information and outsourcing business services, as well as, managing, evaluating, and coordinating internal firm activities. In search of a better location for these functions, firms often separate the HQ function physically from their production facilities and construct stand-alone HQs. By locating its HQ in a large, service oriented metro area away from its production facilities, a firm may be better able to out-source service functions in that local metro market and also to gather information about market conditions for their products. However if the firm locates the HQ away from its production activity, that increases the coordination costs in managing plant activities. In this paper we empirically analyze the trade-off of these two considerations.Corporations - Headquarters ; Industrial location ; Manufactures
Flexible control of the Peierls transition in metallic C polymers
The metal-semiconductor transition of peanut-shaped fullerene (C)
polymers is clarified by considering the electron-phonon coupling in the uneven
structure of the polymers. We established a theory that accounts for the
transition temperature reported in a recent experiment and also suggests
that is considerably lowered by electron doping or prolonged irradiation
during synthesis. The decrease in is an appealing phenomenon with regard
to realizing high-conductivity C-based nanowires even at low
temperatures.Comment: 3 pages, 3 figure
Nonlinear Doping of Cuprate Superconductors -- The case of Bi_2Sr_{2-x}La_xCuO_{6+\delta}
We analyze the hole doping mechanism in Bi_2Sr_{2-x}La_xCuO_{6+\delta}
(BSLCO). The singular optimum around x=0.35 is found to be connected with a
feedback between the doped CuO_2 layers and its dopant reactant
[La^{3+}/Bi^{3+}-O_\delta] locking the number of doped holes preferentially on
to the universal optimum n_opt=0.16.Comment: Typos correcte
On Shimura's decomposition
Let be an odd integer and a positive integer such that . Let be an even Dirichlet character modulo . Shimura
decomposes the space of half-integral weight cusp forms as a
direct sum of (the subspace spanned by 1-variable theta- series)
and where runs through a certain family of
integral weight newforms. The explicit computation of this decomposition is
important for practical applications of a theorem of Waldspurger relating
critical values of -functions of quadratic twists of newforms of even weight
to coefficients of modular forms of half-integral weight.Comment: 12 pages, to appear in the International Journal of Number Theor
- âŠ