145 research outputs found

    Cellular self-organization on micro-structured surfaces

    Get PDF
    Micro-patterned surfaces are frequently used in high-throughput single-cell studies, as they allow one to image isolated cells in defined geometries. Commonly, cells are seeded in excess onto the entire chip, and non-adherent cells are removed from the unpatterned sectors by rinsing. Here, we report on the phenomenon of cellular self-organization, which allows for autonomous positioning of cells on micro-patterned surfaces over time. We prepared substrates with a regular lattice of protein-coated adhesion sites surrounded by PLL-g-PEG passivated areas, and studied the time course of cell ordering. After seeding, cells randomly migrate over the passivated surface until they find and permanently attach to adhesion sites. Efficient cellular self-organization was observed for three commonly used cell lines (HuH7, A549, and MDA-MB-436), with occupancy levels typically reaching 40-60% after 3-5 h. The time required for sorting was found to increase with increasing distance between adhesion sites, and is well described by the time-to-capture in a random-search model. Our approach thus paves the way for automated filling of cell arrays, enabling high-throughput single-cell analysis of cell samples without losses

    A phase of liposomes with entangled tubular vesicles

    Get PDF
    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L4 phase of spherical vesicles and a bulk L alpha phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure

    Ring-Shaped Microlanes and Chemical Barriers as a Platform for Probing Single-Cell Migration

    Get PDF
    Quantification and discrimination of pharmaceutical and disease-related effects on cell migration requires detailed characterization of single-cell motility. In this context, micropatterned substrates that constrain cells within defined geometries facilitate quantitative readout of locomotion. Here, we study quasi-one-dimensional cell migration in ring-shaped microlanes. We observe bimodal behavior in form of alternating states of directional migration (run state) and reorientation (rest state). Both states show exponential lifetime distributions with characteristic persistence times, which, together with the cell velocity in the run state, provide a set of parameters that succinctly describe cell motion. By introducing PEGylated barriers of different widths into the lane, we extend this description by quantifying the effects of abrupt changes in substrate chemistry on migrating cells. The transit probability decreases exponentially as a function of barrier width, thus specifying a characteristic penetration depth of the leading lamellipodia. Applying this fingerprint-like characterization of cell motion, we compare different cell lines, and demonstrate that the cancer drug candidate salinomycin affects transit probability and resting time, but not run time or run velocity. Hence, the presented assay allows to assess multiple migration-related parameters, permits detailed characterization of cell motility, and has potential applications in cell biology and advanced drug screening

    High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators

    Full text link
    The inherent coupling of optical and mechanical modes in high finesse optical microresonators provide a natural, highly sensitive transduction mechanism for micromechanical vibrations. Using homodyne and polarization spectroscopy techniques, we achieve shot-noise limited displacement sensitivities of 10^(-19) m Hz^(-1/2). In an unprecedented manner, this enables the detection and study of a variety of mechanical modes, which are identified as radial breathing, flexural and torsional modes using 3-dimensional finite element modelling. Furthermore, a broadband equivalent displacement noise is measured and found to agree well with models for thermorefractive noise in silica dielectric cavities. Implications for ground-state cooling, displacement sensing and Kerr squeezing are discussed.Comment: 25 pages, 8 figure

    Flow profiling of a surface acoustic wave nanopump

    Get PDF
    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing Surface Acoustic Waves is investigated both experimentally and theoretically. Such ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate an internal streaming within the fluid. Such acoustic streaming can be used for controlled agitation during, e.g., microarray hybridization. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power somewhat weaker than linearly and to decrease fast with the distance from the ultrasound generator on the chip.Comment: 12 pages 20 figure

    Hydrodynamic lift on bound vesicles

    Full text link
    Bound vesicles subject to lateral forces such as arising from shear flow are investigated theoretically by combining a lubrication analysis of the bound part with a scaling approach to the global motion. A minor inclination of the bound part leads to significant lift due to the additive effects of lateral and tank-treading motions. With increasing shear rate, the vesicle unbinds from the substrate at a critical value. Estimates are in agreement with recent experimental data.Comment: 9 pages, one figur

    Coupling between Smectic and Twist Modes in Polymer Intercalated Smectics

    Full text link
    We analyse the elastic energy of an intercalated smectic where orientationally ordered polymers with an average orientation varying from layer to layer are intercalated between smectic planes. The lowest order terms in the coupling between polymer director and smectic layer curvature are added to the smectic elastic energy. Integration over the smectic degrees of freedom leaves an effective polymer twist energy that has to be included into the total polymer elastic energy leading to a fluctuational renormalization of the intercalated polymer twist modulus. If the polymers are chiral this in its turn leads to a renormalization of the cholesteric pitch.Comment: 8 pages, 1 fig in ps available from [email protected] Replaced version also contains title and abstract in the main tex

    Sliding Columnar Phase of DNA-Lipid Complexes

    Full text link
    We introduce a simple model for DNA-cationic-lipid complexes in which galleries between planar bilayer lipid lamellae contain DNA 2D smectic lattices that couple orientationally and positionally to lattices in neighboring galleries. We identify a new equilibrium phase in which there are long-range orientational but not positional correlations between DNA lattices. We discuss properties of this new phase such as its X-ray structure factor S(r), which exhibits unusual exp(- const.ln^2 r) behavior as a function of in-plane separation r.Comment: This file contains 4 pages of double column text and one postscript figure. This version includes interactions between dislocations in a given gallery and presents an improved estimate of the decoupling temperature. It is the published versio
    • …
    corecore