
ing in a nonlinear complex system driven far
from equilibrium (25). In this case, the mod-
el suggests that essentially all of the carbon
condensing on the cathode is initially in the
form of perfect fullerene fibers, purified in
the "zone refining" of the arc. Although
these nanofibers are highly stable in isola-
tion on the nanometer scale, when touch-
ing each other on the macroscale they are,
unfortunately, only metastable. The same
fire that gives birth to them in the arc also
leads to their destruction by sintering
(26). Still, much can be made from those
nanotubes that survive (imperfect as they
may be) in the ashes of zone 1 and in the
tangles of zone 2.
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A Phase of Liposomes with Entangled
Tubular Vesicles
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An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of
dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived
from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and
optical microscopy reveal the phase, labeled LM to be composed of highly entangled
tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar
with the lipids in the chain-melted state. Macroscopic observations show that the Ltv
phase coexists with the well-known L4 phase of spherical vesicles and a bulk L,. phase.
However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing
effect under shear, which results from its polymer-like entangled microstructure.

Phospholipid molecules form closed bilayer
shells known as liposomes or vesicles when
dispersed in water because of the amphiphil-
ic nature of the molecules (1). Since their
discovery by Bangham et al. (2), uni- and
multilamellar vesicles have received much
attention because of their similarities to liv-
ing cells and their potential for encapsulat-
ing and segregating water-soluble materials
from a bulk solution (1). Vesicles are used
extensively as models of adhesion, de-adhe-
sion, and fusion of interacting cells (1, 3)
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and in fundamental studies of colloidal in-
teractions and stability (4, 5). From a tech-
nological viewpoint, vesicles are increasing-
ly used in the cosmetics industries as con-
trolled chemical release agents (such as in
formulations of lotions, gels, and creams)
(6); they continue to be explored for their
utility in the food and agricultural industries
and are likely to dramatically impact the
medical field as drug and gene carriers (7).
We report on the discovery of another

vesicle phase in room-temperature mixtures
of DMPC, water, and geraniol. Geraniol is a
branched long-chain biological alcohol, de-
rived from oil-soluble vitamins, that acts as a
cosurfactant (Fig. 1). In the DMPC-rich cor-
ner of the phase diagram, we observe a lyo-
tropic liquid-crystal multilamellar Lot phase,
and in the water-rich corner, an extremely
dilute phase of spherical unilamellar vesicles
that is similar to the equilibrium vesicle
phases (L4) recently observed in similar sys-
tems (8-10). A phase consisting of entan-
gled multilamellar tubular vesicles, which we
have labeled the Lt phase, emerges in the
region between the La and L4 phases. The

t phase responds dramatically to applied
flow fields, which strongly indicates that its
microstructure is similar to that of a semidi-
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lute, entangled polymer solution. Typical di-
lute uni- and multilamellar vesicles cannot
become entangled because of their closed,
spherical topology and hence have rather
simple, solvent-dominated behavior under
shear (10).

Myelin-like cylindrical vesicles similar to
the L, phase have been observed in the
early stages of hydration of lecithin samples
(11). However, the formation of these het-
erogeneous samples depended on the meth-
od of lipid hydration and were primarily
made up of large spherical multilamellar ves-
icles; the nonspherical structures gradually
evolved into spherical structures on equili-
bration. Here we report on a distinct situa-
tion associated with the equilibrium phase
behavior of a ternary system. Upon simply
mixing DMPC, geraniol, and water at the
appropriate ratios and storing the solution
at 250C without agitation, tubular vesicles
form spontaneously. Over a wide variety of
concentrations, long-term phase coexist-
ence is observed, either between the Ltv
and L4 phases or the La and Ltv phases
(Figs. 1 and 2).
A key ingredient leading to the formation

of this new phase is the presence of an
alcohol or "cosurfactant." Cosurfactants,
such as alcohols, act in a fashion similar to
that of surfactants in that they partition
preferentially into the bilayer, although they
typically do not undergo extensive self-as-
sembly. Alcohol cosurfactants are known to

qualitatively alter phase behavior when
present as a majority component in the bi-
layer, typically two to four cosurfactant mol-
ecules per surfactant (12-15). The stiffness
or bending rigidity (kc 50 kBT, where kB is
Boltzmann's constant and T is temperature)
of DMPC-water multilayers in the La phase
(16, 17) may be strongly reduced by the
addition of the cosurfactant pentanol (18),
which decreases the bilayer thickness and
makes the membranes more flexible. As a
result, an enhanced undulation repulsion
(15, 18-21) between mixed lipid-cosurfac-
tant bilayers enables dilution of the stacked
membrane phase to interlayer spacings much
larger than the membrane thickness [which
is typical of rigid membranes (4, 22)].

The ternary phase diagram of DMPC-
geraniol-water system at 25°C (Fig. 1) has
four single-phase domains along with regions
(shaded) where two or more of these phases
coexist. Single-phase domains occur in each
of the DMPC-, water-, and geraniol-rich cor-
ners of the phase diagram; they are, respec-
tively, the well-known La or lamellar phase,
an extremely dilute vesicle phase (L4), and a
reverse-micellar phase. In binary DMPC-wa-
ter mixtures, at concentrations less than
about 40 weight % water, an La,, phase is
formed (22); however, in ternary DMPC-
geraniol-water mixtures at -14 weight %
geraniol, the La phase can be diluted to -46
weight % water (resulting in an interlayer
spacing d = 63 A). At about the same ratio

of DMPC to geraniol, dilution of the lamel-
lar phase to greater than 46 weight % water
leads to phase separation, giving rise to a
bluish and transparent L, phase on the sur-
face that coexists with a lamellar La phase
that settles to the bottom of the sample vial.
In Fig. 1, the shaded area below the La phase
is a two-phase region where the L, phase
coexists with the lamellar phase.
When samples are prepared at approxi-

mately 75 weight % water, 15 weight %
DMPC, and 10 weight % geraniol, the pre-
dominant phase formed (>90% by volume)
is the bluish Ltv phase. The Ltv phase
appears to be an equilibrium phase; sealed
solutions of this phase have remained sta-
ble for more than 2 years. The new phase
is stable at 25°C, appearing isotropic be-
tween cross-polarizers, and is temperature-

1 10 100 1000

Shear rate (s-1)

Water Geraniol

Fig. 1. Ternary phase diagram of DMPC-geraniol-water at 250C [DMPC and geraniol were purchased from

Avanti Polar Lipids (Alabaster, Alabama) and Sigma (St. Louis, Missouri), respectively]. The two-phase
regions are shown as shaded areas and the one-phase lamellar (La) and reverse-micellar phases are

outlined by solid lines. Probable single-phase regions of the tubular Ltv and the unilamellar spherical L4
phase vesicles are indicated by black dots because they were found only in restricted regimes of concen-

tration. The structure at the top right is DMPC, a double-tailed bilayer-forming lipid, and the structure at the

bottom right is geraniol, a branched biological alcohol.
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Fig. 2. (A) Photograph of a test tube showing the
interface of a two-phase sample with a tubular ves-
icle phase LtN (top) and a dilute L4 spherical vesicle
phase (bottom). (B) When a rotating rod (not
shown) is inserted into the upper phase, the ob-
served response is characteristic of a densely en-

tangled semidilute polymer liquid: The interface
moves inward and upward as described in the text.
(C) Viscosity of the Ltv phase (80 weight % water,
14 weight % DMPC, and 6 weight % geraniol) in
centipoise (1 P = 1 dyne-s cm-2) plotted versus
the shear rate at 250C. The viscous phase shows
slight thickening over the four decades of mea-

sured shear rate. The instrument used was a low-
shear rotational couette rheometer (Contraves LS-
30, AG Zurich, Switzerland).
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sensitive, turning cloudy upon cooling.
Particularly interesting is the flow behav-

ior at the interface of the LtN and L4 phases.
We made a mixture of 76 weight% water, 18
weight % DMPC, and 6 weight % geraniol
with a well-defined interface (Fig. 2A).
Cryogenic transmission electron microscopy
(cryo-TEM) has shown that the bottom
phase consists of dilute spherical vesicles
(L4) (Fig. 1) and that the upper phase is the
L, phase. The top phase shows rather dra-
matic flow effects (Fig. 2B); a rotating rod
inserted into the top phase leads to an im-
mediate response in which the interface
moves inward and climbs toward the rod at
the center. This behavior, although uncom-
mon in typical vesicle dispersions, is reminis-
cent of the so-called Weissenberg effect (23)
observed in semidilute polymer solutions.
We note, however, that the L,, phase exhib-
its an "inverse" Weissenberg effect; the typ-
ical Weissenberg effect would lead to the
interface moving inward and dipping at the
center. This inverted behavior may arise
from a larger second normal stress difference
of the Lt, phase under flow than is usually
found in semidilute polymeric solutions (24).
The Weissenberg effect is a consequence of
flow-induced normal stresses induced by an
entangled network. Hence, this flow re-
sponse of the L, phase is strongly suggestive
of a highly entangled microstructure. The
Weissenberg effect is the most distinctive
and unusual signature of this phase. More
detailed measurements of the Lt. phase (Fig.
2C) show that it is quite viscous, between 22
and 24 times the viscosity of water, and
shows a slight thickening tendency over four
decades of shear rate.

Analyses with cryo-TEM, optical micros-
copy, and x-ray scattering show, in fact, that
the Lt, phase consists of bilayer sheets in the
form of tubular vesicles, unlike the "living
polymer" (25) systems consisting of self-as-
sembled cylindrical micelles. This difference
may account for the observation of the in-
verse Weissenberg effect under flow (Fig.
2B). We prepared the cryo-TEM samples by
spreading the sample into a thin (<100 nm)
film on a holey-carbon grid (Pella, Redding,
California); the grid was then frozen by
plunging it into liquid ethane cooled by liq-
uid nitrogen. Plunging resulted in vitrifica-
tion of the solvent, and the solution micro-
structure was preserved. We avoided evapo-
ration losses and temperature effects by pre-
paring the films in a temperature- and
humidity-controlled environmental cham-
ber (26). The films were examined at
-170°C in a JEM 2000FX (Peabody, Mas-
sachusetts) scanning transmission electron
microscope with a GATAN (Pleasanton,
California) cryotransfer system.
A cryo-TEM image of a relatively thin

area of one such sample of Lt, phase (Fig.
3A) reveals extended cylindrical structures

1224

Fig. 3. (A) Cryo-TEM image of a thin section of the
Lt, phase [taken from the top of a two-phase
sample (97.4 weight % water, 2.1 weight %
DMPC, and 0.5 weight % geranioq at 250C show-
ing multilayered cylindrical vesicles along with
spindle-shaped unilamellar structures. The inter-
layer spacing measured in the micrographs is
consistent with the layer spacing for this phase
measured with x-ray scattering. (B) Athicker cryo-
TEM specimen prepared from the Lt, phase dis-
plays a highly entangled lamellar structure. The
cylindrical units are crisscrossing the field of view,
and a large multilamellar vesicle is shown by a
filled arrowhead. A stack of unidirectional tubular
vesicles is indicated by open arrowheads.

spanning the field of view (>10 ,um long).
The image shows concentrically wrapped bi-
layers that bulge at regular intervals. A ma-
jority of these vesicles have spindle-shaped
structures with the cylinder diameter varying
along their length from greater than 100 nm
to almost the width of a single membrane
tether. The individual bilayers are well sep-
arated from each other, indicating a more
repulsive interaction [most likely enhanced
undulation repulsion (15, 18-21)] between
the bilayers than found in the lamellar
phase, in which the bilayer spacing is about
the same as the bilayer thickness (22). A
thicker area of the cryo-TEM specimen (Fig.
3B) shows that these tubular vesicles can be
highly entangled and take on a variety of
spherical and cylindrical shapes. This level
of entanglement is consistent with the Weis-

Fg. 4. (A) Optical micrograph with DIC depicting
the multilayered tubular vesicles of the Ltv phase
(97.4 weight % water, 2.1 weight % DMPC, and
0.5 weight % geraniol at 250C) with significantly
larger dimensions than those observed by TEM
(Fig. 3) that get excluded from the thin films pre-
pared for electron microscopy. The wormy vesicles
appear extremely fluid and are aligned in one direc-
tion because of flow and also the proximity of the
glass surface. (B) Phase-contrast optical micro-
graph of a different region of the same sample
showing the elongated tubular vesicles. Bars indi-
cate 10 ,um. Micrographs taken with a Nikon Dia-
phot 300.

senberg effect observed in the L, phase un-
der shear.
On larger length scales, we observed tu-

bular and elongated multilamellar vesicles
with optical microscopy using both differen-
tial interference contrast (DIC) (Fig. 4A)
and phase contrast (Fig. 4B). Here, however,
the tubules were observed on a much larger
scale both in diameter (- 1 ,um) and length
(-100 ,um), although the general tubular
morphologies observed seem independent of
the length scale. The microscopy images
show that the predominant morphology for
the L, phase is a dense cross-linked network
of multilamellar tubular vesicles. The im-
ages reveal an abundance of conforma-
tions of tubular vesicles, most of them
appearing entangled, but occasionally
flow-induced alignment was observed. On
rare occasions, we observed breakage of
the long vesicles followed by a slow retrac-
tion of the ends. Microscopy also reveals
that these cylindrical vesicles coexist with
some extremely large spherical vesicles
that are often highly convoluted and mul-
tilamellar. In the case of accidental flow,
the vesicle structures elongated and with-

SCIENCE * VOL. 266 * 18 NOVEMBER 1994

 o
n 

M
ay

 9
, 2

00
8 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org


Fig. 5. Longitudinal x-ray
scans for a sample in the Lt,
phase (triangles) (75.4
weight % water, 18.1 weight
% DMPC, and 6.5 weight %
geraniol) and the La phase
(squares) (21 weight % wa-
ter, 61 weight % DMPC, and
18 weight % geraniol). The
multiple harmonics ob-
served in the La phase give
an interlayer spacing d = 44
A. The narrowness and po-
sition of the peak at small
wave vectors in the Lt.
phase indicates that the tu-
bules observed in the mi-
croscopy experiments con-
sist of multilayers with an av-
erage d = 2rr/q = 161 A.
Note the expanded scale to
the right.
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