4,045 research outputs found

    Origin of the inflationary Universe

    Full text link
    We give a consistent description of how the inflationary Universe emerges in quantum cosmology. This involves two steps: Firstly, it is shown that a sensible probability peak can be obtained from the cosmological wave function. This is achieved by going beyond the tree level of the semiclassical expansion. Secondly, due to decoherence interference terms between different semiclassical branches are negligibly small. The results give constraints on the particle content of a unified theory.Comment: LATEX, 6 pages, selected for honorable mention in the 1999 Essay Competition of the Gravity Research Foundation. To appear in Mod. Phys. Lett.

    Operator ordering and consistency of the wavefunction of the Universe

    Get PDF
    We demonstrate in the context of the minisuperspace model consisting of a closed Friedmann-Robertson-Walker universe coupled to a scalar field that Vilenkin's tunneling wavefunction can only be consistently defined for particular choices of operator ordering in the Wheeler-DeWitt equation. The requirement of regularity of the wavefunction has the particular consequence that the probability amplitude, which has been used previously in the literature in discussions of issues such as the prediction of inflation, is likewise ill-defined for certain choices of operator ordering with Vilenkin's boundary condition. By contrast, the Hartle-Hawking no-boundary wavefunction can be consistently defined within these models, independently of operator ordering. The significance of this result is discussed within the context of the debate about the predictions of semiclassical quantum cosmology. In particular, it is argued that inflation cannot be confidently regarded as a "prediction" of the tunneling wavefunction, for reasons similar to those previously invoked in the case of the no-boundary wavefunction. A synthesis of the no-boundary and tunneling approaches is argued for.Comment: 9 pages, epsf, revTeX-3.1, 1 figure. In revised version (v2) a new section etc with additional arguments increases the length of paper by 3 pages of Physical Review; several references added. v3: small typos fixe

    Space for Both No-Boundary and Tunneling Quantum States of the Universe

    Full text link
    At the minisuperspace level of homogeneous models, the bare probability for a classical universe has a huge peak at small universes for the Hartle-Hawking `no-boundary' wavefunction, in contrast to the suppression at small universes for the `tunneling' wavefunction. If the probability distribution is cut off at the Planck density (say), this suggests that the former quantum state is inconsistent with our observations. For inhomogeneous models in which stochastic inflation can occur, it is known that the idea of including a volume factor in the observational probability distribution can lead to arbitrarily large universes' being likely. Here this idea is shown to be sufficient to save the Hartle-Hawking proposal even at the minisuperspace level (for suitable inflaton potentials), by giving it enough space to be consistent with observations.Comment: LaTeX, 20 pages, no figures, blank lines removed, page break inserte

    Creation of a Compact Topologically Nontrivial Inflationary Universe

    Full text link
    If inflation can occur only at the energy density V much smaller than the Planck density, which is the case for many inflationary models based on string theory, then the probability of quantum creation of a closed or an infinitely large open inflationary universe is exponentially suppressed for all known choices of the wave function of the universe. Meanwhile under certain conditions there is no exponential suppression for creation of topologically nontrivial compact flat or open inflationary universes. This suggests, contrary to the standard textbook lore, that compact flat or open universes with nontrivial topology should be considered a rule rather than an exception.Comment: 9 pages 2 figures, new materials and references adde

    Gravitational waves from stochastic relativistic sources: primordial turbulence and magnetic fields

    Full text link
    The power spectrum of a homogeneous and isotropic stochastic variable, characterized by a finite correlation length, does in general not vanish on scales larger than the correlation scale. If the variable is a divergence free vector field, we demonstrate that its power spectrum is blue on large scales. Accounting for this fact, we compute the gravitational waves induced by an incompressible turbulent fluid and by a causal magnetic field present in the early universe. The gravitational wave power spectra show common features: they are both blue on large scales, and peak at the correlation scale. However, the magnetic field can be treated as a coherent source and it is active for a long time. This results in a very effective conversion of magnetic energy in gravitational wave energy at horizon crossing. Turbulence instead acts as a source for gravitational waves over a time interval much shorter than a Hubble time, and the conversion into gravitational wave energy is much less effective. We also derive a strong constraint on the amplitude of a primordial magnetic field when the correlation length is much smaller than the horizon.Comment: Replaced with revised version accepted for publication in Phys Rev

    Inflation from Susy quantum cosmology

    Full text link
    We propose a realization of inverted hybrid inflation scenario in the context of n=2 supersymmetric quantum cosmology. The spectrum of density fluctuations is calculated in the de Sitter regimen as a function of the gravitino and the Planck mass, and explicit forms for the wave function of the universe are found in the WKB regimen for a FRW closed and flat universes.Comment: 9 pages, one figure, to appear in Phys. Rev.

    On the Infrared Behavior of the Pressure in Thermal Field Theories

    Full text link
    We study non-perturbatively, via the Schwinger-Dyson equations, the leading infrared behavior of the pressure in the ladder approximation. This problem is discussed firstly in the context of a thermal scalar field theory, and the analysis is then extended to the Yang-Mills theory at high temperatures. Using the Feynman gauge, we find a system of two coupled integral equations for the gluon and ghost self-energies, which is solved analytically. The solutions of these equations show that the contributions to the pressure, when calculated in the ladder approximation, are finite in the infrared domain.Comment: 20 pages plus 4 figures available by request, IFUSP/P-100

    Mutated Hilltop Inflation : A Natural Choice for Early Universe

    Full text link
    We propose a model of inflation with a suitable potential for a single scalar field which falls in the wide class of hilltop inflation. We derive the analytical expressions for most of the physical quantities related to inflation and show that all of them represent the true behavior as required from a model of inflation. We further subject the results to observational verification by formulating the theory of perturbations based on our model followed by an estimation for the values of those observable parameters. Our model is found to be in excellent agreement with observational data. Thus, the features related to the model leads us to infer that this type of hilltop inflation may be a natural choice for explaining the early universe.Comment: 22 pages, 7 figures, 2 tables. Matches published version in JCA

    Inflation in minimal left-right symmetric model with spontaneous D-parity breaking

    Full text link
    We present a simplest inflationary scenario in the minimal left-right symmetric model with spontaneous D-parity breaking, which is a well motivated particle physics model for neutrino masses. This leads us to connect the observed anisotropies in the cosmic microwave background to the sub-eV neutrino masses. The baryon asymmetry via the leptogenesis route is also discussed briefly.Comment: (v1) 4 pages, 1 figure; (v2) typos corrected; (v3) title and abstract changed, numerical estimates given, minor changes; (v4) 5 pages, relations between the neutrino masses and the CMB fluctuations become more explicit, miscellaneous changes, to appear in Physical Review

    Braneworld effective action and origin of inflation

    Get PDF
    We construct braneworld effective action in two brane Randall-Sundrum model and show that the radion mode plays the role of a scalar field localizing essentially nonlocal part of this action. Non-minimal curvature coupling of this field reflects the violation of AdS/CFT-correspondence for finite values of brane separation. Under small detuning of the brane tension from the Randall-Sundrum flat brane value, the radion mode can play the role of inflaton. Inflationary dynamics corresponds to branes moving apart in the field of repelling interbrane inflaton-radion potential and implies the existence acceleration stage caused by remnant cosmological constant at late (large brane separation) stages of evolution. We discuss the possibility of fixing initial conditions in this model within the concept of braneworld creation from the tunneling or no-boundary cosmological state, which formally replaces the conventional moduli stabilization mechanism.Comment: 18 pages, LaTeX, the effective action form factor is corrected for small separation between branes and new references are adde
    corecore