5 research outputs found

    Nicotine promotes neuron survival and partially protects from Parkinson’s disease by suppressing SIRT6

    No full text
    Parkinson’s disease is characterized by progressive death of dopaminergic neurons, leading to motor and cognitive dysfunction. Epidemiological studies consistently show that the use of tobacco reduces the risk of Parkinson’s. We report that nicotine reduces the abundance of SIRT6 in neuronal culture and brain tissue. We find that reduction of SIRT6 is partly responsible for neuroprotection afforded by nicotine. Additionally, SIRT6 abundance is greater in Parkinson’s patient brains, and decreased in the brains of tobacco users. We also identify SNPs that promote SIRT6 expression and simultaneously associate with an increased risk of Parkinson’s. Furthermore, brain-specific SIRT6 knockout mice are protected from MPTP-induced Parkinson’s, while SIRT6 overexpressing mice develop more severe pathology. Our data suggest that SIRT6 plays a pathogenic and pro-inflammatory role in Parkinson’s and that nicotine can provide neuroprotection by accelerating its degradation. Inhibition of SIRT6 may be a promising strategy to ameliorate Parkinson’s and neurodegeneration. Keywords: Parkinson's disease; SIRT6; Nicotine; Neuroprotection; Neurodegeneration; Cell deat

    Nicotine promotes neuron survival and partially protects from Parkinson’s disease by suppressing SIRT6

    No full text
    Abstract Parkinson’s disease is characterized by progressive death of dopaminergic neurons, leading to motor and cognitive dysfunction. Epidemiological studies consistently show that the use of tobacco reduces the risk of Parkinson’s. We report that nicotine reduces the abundance of SIRT6 in neuronal culture and brain tissue. We find that reduction of SIRT6 is partly responsible for neuroprotection afforded by nicotine. Additionally, SIRT6 abundance is greater in Parkinson’s patient brains, and decreased in the brains of tobacco users. We also identify SNPs that promote SIRT6 expression and simultaneously associate with an increased risk of Parkinson’s. Furthermore, brain-specific SIRT6 knockout mice are protected from MPTP-induced Parkinson’s, while SIRT6 overexpressing mice develop more severe pathology. Our data suggest that SIRT6 plays a pathogenic and pro-inflammatory role in Parkinson’s and that nicotine can provide neuroprotection by accelerating its degradation. Inhibition of SIRT6 may be a promising strategy to ameliorate Parkinson’s and neurodegeneration

    mTOR signaling in proteostasis and its relevance to autism spectrum disorders

    No full text
    Proteins are extremely labile cellular components, especially at physiological temperatures. The appropriate regulation of protein levels, or proteostasis, is essential for all cells. In the case of highly polarized cells like neurons, proteostasis is also crucial at synapses, where quick confined changes in protein composition occur to support synaptic activity and plasticity. The accurate regulation of those cellular processes controlling protein synthesis and degradation is necessary for proteostasis, and its deregulation has deleterious consequences in brain function. Alterations in those cellular mechanisms supporting synaptic protein homeostasis have been pinpointed in autism spectrum disorders such as tuberous sclerosis, neurofibromatosis 1, PTEN-related disorders, fragile X syndrome, MECP2 disorders and Angelman syndrome. Proteostasis alterations in these disorders share the alterations in mechanistic/mammalian target of rapamycin (mTOR) signaling pathway, an intracellular pathway with key synaptic roles. The aim of the present review is to describe the recent literature on the major cellular mechanisms involved in proteostasis regulation in the synaptic context, and its association with mTOR signaling deregulations in various autism spectrum disorders. Altogether, the cellular and molecular mechanisms in synaptic proteostasis could be the foundation for novel shared therapeutic strategies that would take advantage of targeting common disorder mechanisms.This review was supported by grant BFU2015-68568-P (MINECO/FEDER, EU) to AO
    corecore