270 research outputs found

    The invariants of the Clifford groups

    Get PDF
    The automorphism group of the Barnes-Wall lattice L_m in dimension 2^m (m not 3) is a subgroup of index 2 in a certain ``Clifford group'' C_m (an extraspecial group of order 2^(1+2m) extended by an orthogonal group). This group and its complex analogue CC_m have arisen in recent years in connection with the construction of orthogonal spreads, Kerdock sets, packings in Grassmannian spaces, quantum codes, Siegel modular forms and spherical designs. In this paper we give a simpler proof of Runge's 1996 result that the space of invariants for C_m of degree 2k is spanned by the complete weight enumerators of the codes obtained by tensoring binary self-dual codes of length 2k with the field GF(2^m); these are a basis if m >= k-1. We also give new constructions for L_m and C_m: let M be the Z[sqrt(2)]-lattice with Gram matrix [2, sqrt(2); sqrt(2), 2]. Then L_m is the rational part of the mth tensor power of M, and C_m is the automorphism group of this tensor power. Also, if C is a binary self-dual code not generated by vectors of weight 2, then C_m is precisely the automorphism group of the complete weight enumerator of the tensor product of C and GF(2^m). There are analogues of all these results for the complex group CC_m, with ``doubly-even self-dual code'' instead of ``self-dual code''.Comment: Latex, 24 pages. Many small improvement

    Spherical designs and lattices

    Full text link
    In this article we prove that integral lattices with minimum <= 7 (or <= 9) whose set of minimal vectors form spherical 9-designs (or 11-designs respectively) are extremal, even and unimodular. We furthermore show that there does not exist an integral lattice with minimum <=11 which yields a 13-design.Comment: The final publication is available at http://link.springer.com/article/10.1007%2Fs13366-013-0155-
    corecore