290 research outputs found

    Jet signals for low mass strings at the LHC

    Full text link
    The mass scale M_s of superstring theory is an arbitrary parameter that can be as low as few TeVs if the Universe contains large extra dimensions. We propose a search for the effects of Regge excitations of fundamental strings at LHC, in the process p p \to \gamma jet. The underlying parton process is dominantly the single photon production in gluon fusion, g g \to \gamma g, with open string states propagating in intermediate channels. If the photon mixes with the gauge boson of the baryon number, which is a common feature of D-brane quivers, the amplitude appears already at the string disk level. It is completely determined by the mixing parameter -- and it is otherwise model-(compactification-) independent. Even for relatively small mixing, 100 fb^{-1} of LHC data could probe deviations from standard model physics, at a 5\sigma significance, for M_s as large as 3.3 TeV.Comment: Matching version to be published in Phys. Rev. Let

    Characteristics of nonlinear terahertz-wave radiation generated by mid-infrared femtosecond pulse laser excitation

    Get PDF
    We report on efficient terahertz-wave generation in organic and inorganic crystals by nonlinear wavelength conversion approach using a 3.3 μm femtosecond pulse laser. Experimental results reveal the relation between pump power and terahertz-wave output power, which is proportional to the square of the pump power at the range of mega- to tera-watt cm−2 class even if the pump wavelength is different. Damage threshold of organic and inorganic crystals are recorded 0.6 and 18 tera-watt cm−2 by reducing several undesirable nonlinear optical effects using mid-infrared source

    Cartan subalgebras and the UCT problem, II

    Get PDF
    We show that outer approximately represenbtable actions of a finite cyclic group on UCT Kirchberg algebras satisfy a certain quasi-freeness type property if the corresponding crossed products satisfy the UCT and absorb a suitable UHF algebra tensorially. More concretely, we prove that for such an action there exists an inverse semigroup of homogeneous partial isometries that generates the ambient C*-algebra and whose idempotent semilattice generates a Cartan subalgebra. We prove a similar result for actions of finite cyclic groups with the Rokhlin property on UCT Kirchberg algebras absorbing a suitable UHF algebra. These results rely on a new construction of Cartan subalgebras in certain inductive limits of Cartan pairs. We also provide a characterisation of the UCT problem in terms of finite order automorphisms, Cartan subalgebras and inverse semigroups of partial isometries of the Cuntz algebra O2\mathcal{O}_2. This generalizes earlier work of the authors.Comment: minor revisions; final version, accepted for publication in Math. Ann.; 26 page

    Brane cosmological solutions in six-dimensional warped flux compactifications

    Full text link
    We study cosmology on a conical brane in the six-dimensional Einstein-Maxwell-dilaton system, where the extra dimensions are compactified by a magnetic flux. We systematically construct exact cosmological solutions using the fact that the system is equivalently described by (6+n)-dimensional pure Einstein-Maxwell theory via dimensional reduction. In particular, we find a power-law inflationary solution for a general dilatonic coupling. When the dilatonic coupling is given by that of Nishino-Sezgin chiral supergravity, this reduces to the known solution which is not inflating. The power-law solution is shown to be the late-time attractor. We also investigate cosmological tensor perturbations in this model using the (6+n)-dimensional description. We obtain the separable equation of motion and find that there always exist a zero mode, while tachyonic modes are absent in the spectrum. The mass spectrum of Kaluza-Klein modes is obtained numerically.Comment: 12 pages, 2 figures; v2: references added; v3: version published in JCA

    Constraints on chiral operators in N=2 SCFTs

    Get PDF
    Open Access, © The Authors. Article funded by SCOAP3. This article is distributed under the terms of the Creative Commons Attribution License ( CC-BY 4.0 ), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

    Generalized Toda Theory from Six Dimensions and the Conifold

    Get PDF
    Recently, a physical derivation of the Alday-Gaiotto-Tachikawa correspondence has been put forward. A crucial role is played by the complex Chern-Simons theory arising in the 3d-3d correspondence, whose boundary modes lead to Toda theory on a Riemann surface. We explore several features of this derivation and subsequently argue that it can be extended to a generalization of the AGT correspondence. The latter involves codimension two defects in six dimensions that wrap the Riemann surface. We use a purely geometrical description of these defects and find that the generalized AGT setup can be modeled in a pole region using generalized conifolds. Furthermore, we argue that the ordinary conifold clarifies several features of the derivation of the original AGT correspondence.Comment: 27+2 pages, 3 figure

    Localization of N=4 Superconformal Field Theory on S^1 x S^3 and Index

    Full text link
    We provide the geometrical meaning of the N=4{\cal N}=4 superconformal index. With this interpretation, the N=4{\cal N}=4 superconformal index can be realized as the partition function on a Scherk-Schwarz deformed background. We apply the localization method in TQFT to compute the deformed partition function since the deformed action can be written as a δϵ\delta_\epsilon-exact form. The critical points of the deformed action turn out to be the space of flat connections which are, in fact, zero modes of the gauge field. The one-loop evaluation over the space of flat connections reduces to the matrix integral by which the N=4{\cal N}=4 superconformal index is expressed.Comment: 42+1 pages, 2 figures, JHEP style: v1.2.3 minor corrections, v4 major revision, conclusions essentially unchanged, v5 published versio

    Super-A-polynomials for Twist Knots

    Full text link
    We conjecture formulae of the colored superpolynomials for a class of twist knots KpK_p where p denotes the number of full twists. The validity of the formulae is checked by applying differentials and taking special limits. Using the formulae, we compute both the classical and quantum super-A-polynomial for the twist knots with small values of p. The results support the categorified versions of the generalized volume conjecture and the quantum volume conjecture. Furthermore, we obtain the evidence that the Q-deformed A-polynomials can be identified with the augmentation polynomials of knot contact homology in the case of the twist knots.Comment: 22+16 pages, 16 tables and 5 figures; with a Maple program by Xinyu Sun and a Mathematica notebook in the ancillary files linked on the right; v2 change in appendix B, typos corrected and references added; v3 change in section 3.3; v4 corrections in Ooguri-Vafa polynomials and quantum super-A-polynomials for 7_2 and 8_1 are adde
    corecore