24 research outputs found

    Influence of hydrogen peroxide in the tribocorrosion behaviour of a CoCrMo biomedical alloy

    Get PDF
    This paper studies the influence of hydrogen peroxide (H2O2) in simulated body fluids on the wear and corrosion behaviour of a CoCrMo biomedical alloy. CoCrMo are passive materials commonly used in prosthesis and implants because of its high corrosion resistance and mechanical properties. Hydrogen peroxide is produced by bacteria and leukocytes as a consequence of an inflammatory reaction which may modify the tribo-electrochemical response of metals implanted in the human body. Indeed, the oxidizing environment generated by the presence of the peroxide increases the metal dissolution rate. Electrochemical and tribocorrosion tests were carried out in a PBS solution with different addition of H2O2 (0.5, 2, 4 and 12%).The authors acknowledge Generalitat Valencia for the Gerónimo Forteza financial support and to the Electron Microscopy Service of the UPV for the SEM images

    Re-entry survival analysis and ground risk assessment of space debris considering by-products generation

    Full text link
    [EN] Space debris that re-enter the Earth's atmosphere can be partially or fully ablated along the trajectory path after hitting the atmosphere layers, once these become denser (approximately below 82 km). This paper combines reentry survival analysis to by-product generation analyses according to specific trajectory analysis and different levels of modelling within the re-entry simulation tool. Particular attention is made on metallic alloy decomposition and metallic oxides formation from the debris' materials ablation. Generic alloys present within satellite constructions are considered. The flow field in the induced shock layer is considered to be in non-equilibrium and the trajectory tool is based on a 3DOF object-oriented approach. The by-product analyses give important information on emitted species in the atmosphere at different altitudes, and the risk of substances reaching the ground is evaluated as a function of the initial break-up altitude. The non-equilibrium atmospheric chemistry within the shock layer has a significant impact for the re-entry analysis.This work was supported by the Swiss Government Excellence Scholarship (ESKAS No. 2019.0535) awarded by Federal Commission for Scholarships (FCS). The collaboration with UPV was partially financed as part of an activity performed with TAS-I in the context of an ESA subcontract ARA, under ITT-A0/1-8558/16/NL/KML.Park, S.; Navarro-Laboulais, J.; Leyland, P.; Mischler, S. (2021). Re-entry survival analysis and ground risk assessment of space debris considering by-products generation. Acta Astronautica. 179:604-618. https://doi.org/10.1016/j.actaastro.2020.09.03460461817

    Dynamic optimization of a gas-liquid reactor

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10910-011-9941-1A dynamic gas-liquid transfer model without chemical reaction based on unsteady film theory is considered. In this case, the mathematical model presented for gas-liquid mass-transfer processes is based on mass balances of the transferred substance in both phases. The identificability property of this model is studied in order to confirm the possible identifiable parameters of the model from a given set of experimental data. For that, a different modeled of the system is given. A procedure for the identification is proposed. On the other hand, the aim of this work is to solve the quadratic optimal control problem, using an explicit representation of the model. The problem includes some results on controllability, observability and stability criteria and the relation between these properties and the parameters of the model. Using the optimal control problem we study the stability of the system and show how the choice of the weighting matrices can improve the behavior of the system but with an increase of the energy control cost. © 2011 Springer Science+Business Media, LLC.This work has been partially supported by PAID-05-10-003-295 and by MTM2010-18228.Cantó Colomina, B.; Cardona Navarrete, SC.; Coll, C.; Navarro-Laboulais, J.; Sánchez, E. (2012). Dynamic optimization of a gas-liquid reactor. Journal of Mathematical Chemistry. 50(2):381-393. https://doi.org/10.1007/s10910-011-9941-1S381393502Bayón L., Grau J.M., Ruiz M.M., Suárez P.M.: Initial guess of the solution of dynamic optimization of chemical processes. J. Math. Chem. Model. 48, 28–37 (2010)Ben-Zvi A., McLellan P.J., McAuley K.B.: Ind. Eng. Chem. Res. 42, 6607–6618 (2003)Cantó B., Coll C., Sánchez E.: Structural identifiability of a model of dialysis. Math. Comp. Model. 50, 733–737 (2009)Cantó B., Coll C., Sánchez E.: Identifiability of a class of discretized linear partial differential algebraic equations. Math. Probl. Eng. 2011, 1–12 (2011)Craciun G., Pantea C.: Identifiability of chemical reaction networks. J. Math. Chem. 44, 244–259 (2008)Dai L.: Descriptor Control Systems. Springer, New York (1989)Deckwer W.D.: Bubble Column Reactors. Wiley, Chichester (1992)Kantarci N., Borak F., Ulgen K.O.: Bubble column reactors. Proc. Biochem. 40(7), 2263–2283 (2005)Kawakernaak H., Sivan R.: Linear Optimal Control Systems. Wiley-Interscience, New York (1972)Kuo B.C.: Automatic Control Systems, 6th edn. Prentice-Hall, Englewood Cliffs (1991)Navarro-Laboulais J., Cardona S.C., Torregrosa J.I., Abad A., López F.: Practical identifiability analysis in dynamic gas-liquid reactors. Optimal experimental design for mass-transfer parameters determination. Comp. Chem. Eng. 32, 2382–2394 (2008)Navarro-Laboulais J., López F., Torregrosa J.I., Cardona S.C., Abad A.: Transient response, model structure and systematic errors in hybrid respirometers: structural identifiabilit analysis based on OUR and DO measurements. J. Math. Chem. 44(4), 969–990 (2007)Patel R., Munro N.: Multivariable Systen. Theory and Design. Pergamon Press, New York (1982)Sondergeld K.: A generalization of the Routh–Hurwitz stability criteria and a application to a problem in robust controller design. IEEE Trans. Automat. Contr. AC-28(10), 965–970 (1983

    Wear model for describing the time dependence of the material degradation mechanisms of the AISI 316L in a NaCl solution

    Full text link
    [EN] The tribo-electrochemical behavior of AISI 316L has been investigated under tribocorrosion conditions in a 3% NaCl solution and the material damage evolution with time has been analyzed. A numerical contact model based on a Boundary Element Method (BEM) has been developed in order to determine the contact pressure distribution and to quantify the worn material as a function of time. The time dependence of the tribological behavior of the material has been described. At the initial state, the high contact pressures generate a material flow causing an increase in the worn area. After around 300 cycles, the Archard wear model linearly describes the wear evolution with time. The proposed model describes the evolution with time of the wear profiles of the tested material and takes into account the plastic behavior of the material during the first cycles.This work has been funded by the Spanish Ministry of Economy and Competitiveness under the Ref. MAT2014-53764-C3-3-R and the Generalitat Valenciana under the PROMETEO program Ref. 2016/040.Dalmau-Borrás, A.; Roda Buch, A.; Rovira, A.; Navarro-Laboulais, J.; Igual Muñoz, AN. (2018). Wear model for describing the time dependence of the material degradation mechanisms of the AISI 316L in a NaCl solution. Wear. 394-395:166-175. https://doi.org/10.1016/j.wear.2017.10.015S166175394-39

    Chemo-mechanical effects on the tribocorrosion behavior of titanium/ceramic dental implant pairs in artificial saliva

    Full text link
    [EN] In this paper, the degradation mechanisms of the ceramic and the metal in Titanium/Zirconia pairs for biomedical applications were analyzed. To do that, an experimental set-up with well-controlled mechanical and chemical conditions was used based on a unidirectional ball-on-disk tribometer coupled to a potentiostat. Tribocorrosion tests were carried out in artificial saliva at different applied potentials, this is, different chemical conditions of the surface. Wear damage of the titanium/zirconia pair was influenced by the properties and the behavior of wear debris in the contact. Under passive conditions metallic and oxidized titanium particles (formed by the cyclic removal of the passive film and subsequent repassivation) were smeared and mechanically mixed within the contact forming compacted wear debris through which the loading was carried out. Properties and amount of oxidized titanium lead to low wear at low passive conditions (OCP) and higher wear at high passive conditions. Zirconia did not suffer any damage under all the studied conditions and oxidized titanium was transferred to the ball at anodic applied potentials.Authors would like to acknowledge the Generalitat Valenciana for the financial support under the PROMETEO/2016/040 and GV/2017/042 projects. A. Dalmau acknowledges the Generalitat Valenciana for her contract (APOSTD/2017/051).Dalmau-Borrás, A.; Roda Buch, A.; Rovira, A.; Navarro-Laboulais, J.; Igual Muñoz, AN. (2019). Chemo-mechanical effects on the tribocorrosion behavior of titanium/ceramic dental implant pairs in artificial saliva. Wear. 426-427:162-170. https://doi.org/10.1016/j.wear.2018.12.052162170426-42

    Unstationary film model for the determination of absolute gas-liquid kinetic rate constants: ozonation of Acid Red 27, Acid Orange 7, and Acid Blue 129

    Full text link
    A method for the determination of absolute kinetic rate constants is proposed using an unstationary film model. This methodology avoids the experimental determination of parameters like the enhancement factor or the Hatta number which are usually model-dependent. The mathematical model is general for gas-liquid systems with irreversible second order reactions. An optimization procedure based on artificial neural networks is used to estimate the initial guess of the parameters and the subsequent application of Gauss-Newton algorithm for the final nonlinear parameter estimation. The model is tested with the ozonation reaction of Acid Red 27, Acid Orange 7 and Acid Blue 129. The second-order kinetic rate constants for the direct reaction with O3 are 1615±93, 609±83, and 49±2M−1s−1, respectivelyJF acknowledges the support of the doctoral fellowship from the Universitat Politecnica de Valencia (UPV-PAID-FPI-2010-04).Ferre Aracil, J.; Cardona Navarrete, SC.; López Pérez, MF.; Abad Sempere, A.; Navarro-Laboulais, J. (2013). Unstationary film model for the determination of absolute gas-liquid kinetic rate constants: ozonation of Acid Red 27, Acid Orange 7, and Acid Blue 129. Ozone: Science and Engineering. 35(6):423-437. https://doi.org/10.1080/01919512.2013.815104S423437356Biń, A. K. (2006). Ozone Solubility in Liquids. Ozone: Science & Engineering, 28(2), 67-75. doi:10.1080/01919510600558635Cardona, S. C., López, F., Abad, A., & Navarro-Laboulais, J. (2010). On bubble column reactor design for the determination of kinetic rate constants in gas-liquid systems. The Canadian Journal of Chemical Engineering, 88(4), 491-502. doi:10.1002/cjce.20327Chang, C. S., & Rochelle, G. T. (1982). Mass transfer enhanced by equilibrium reactions. Industrial & Engineering Chemistry Fundamentals, 21(4), 379-385. doi:10.1021/i100008a011Dachipally, P., & Jonnalagadda, S. B. (2011). Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems. Journal of Environmental Science and Health, Part A, 46(8), 887-897. doi:10.1080/10934529.2011.580201Danckwerts, P. V., & Lannus, A. (1970). Gas-Liquid Reactions. Journal of The Electrochemical Society, 117(10), 369C. doi:10.1149/1.2407312Das, A. K., & Das, P. K. (2009). Bubble Evolution through a Submerged Orifice Using Smoothed Particle Hydrodynamics: Effect of Different Thermophysical Properties. Industrial & Engineering Chemistry Research, 48(18), 8726-8735. doi:10.1021/ie900350hFerrell, R. T., & Himmelblau, D. M. (1967). Diffusion coefficients of nitrogen and oxygen in water. Journal of Chemical & Engineering Data, 12(1), 111-115. doi:10.1021/je60032a036Gerlach, D., Alleborn, N., Buwa, V., & Durst, F. (2007). Numerical simulation of periodic bubble formation at a submerged orifice with constant gas flow rate. Chemical Engineering Science, 62(7), 2109-2125. doi:10.1016/j.ces.2006.12.061Glasscock, D. A., & Rochelle, G. T. (1989). Numerical simulation of theories for gas absorption with chemical reaction. AIChE Journal, 35(8), 1271-1281. doi:10.1002/aic.690350806Gomes, A. C., Nunes, J. C., & Simões, R. M. S. (2010). Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system. Journal of Hazardous Materials, 178(1-3), 57-65. doi:10.1016/j.jhazmat.2010.01.043Gupta, P., Al-Dahhan, M. H., Duduković, M. P., & Mills, P. L. (2000). A novel signal filtering methodology for obtaining liquid phase tracer responses from conductivity probes. Flow Measurement and Instrumentation, 11(2), 123-131. doi:10.1016/s0955-5986(99)00025-4Hoigné, J., & Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water—I. Water Research, 17(2), 173-183. doi:10.1016/0043-1354(83)90098-2Jamialahmadi, M., Zehtaban, M. R., Müller-Steinhagen, H., Sarrafi, A., & Smith, J. M. (2001). Study of Bubble Formation Under Constant Flow Conditions. Chemical Engineering Research and Design, 79(5), 523-532. doi:10.1205/02638760152424299Johnson, P. N., & Davis, R. A. (1996). Diffusivity of Ozone in Water. Journal of Chemical & Engineering Data, 41(6), 1485-1487. doi:10.1021/je9602125King, C. J. (1966). Turbulent Liquid Phase Mass Transfer at Free Gas-Liquid Interface. Industrial & Engineering Chemistry Fundamentals, 5(1), 1-8. doi:10.1021/i160017a001Ledakowicz, S., Maciejewska, R., Perkowski, J., & Bin, A. (2001). Ozonation of Reactive Blue 81 in the bubble column. Water Science and Technology, 44(5), 47-52. doi:10.2166/wst.2001.0248Lewis, W. K., & Whitman, W. G. (1924). Principles of Gas Absorption. Industrial & Engineering Chemistry, 16(12), 1215-1220. doi:10.1021/ie50180a002Lopez, A., Benbelkacem, H., Pic, J. ‐S., & Debellefontaine, H. (2004). Oxidation pathways for ozonation of azo dyes in a semi‐batch reactor: A kinetic parameters approach. Environmental Technology, 25(3), 311-321. doi:10.1080/09593330409355465Meldon, J. H., Olawoyin, O. O., & Bonanno, D. (2007). Analysis of Mass Transfer with Reversible Chemical Reaction†. Industrial & Engineering Chemistry Research, 46(19), 6140-6146. doi:10.1021/ie0705397Navarro-Laboulais, J., Cardona, S. C., Torregrosa, J. I., Abad, A., & López, F. (2006). Structural identifiability analysis of the dynamic gas–liquid film model. AIChE Journal, 52(8), 2851-2863. doi:10.1002/aic.10901Navarro-Laboulais, J., Cardona, S. C., Torregrosa, J. I., Abad, A., & López, F. (2008). Practical identifiability analysis in dynamic gas–liquid reactors. Computers & Chemical Engineering, 32(10), 2382-2394. doi:10.1016/j.compchemeng.2007.12.004Rapp, T., & Wiesmann, U. (2007). Ozonation of C.I. Reactive Black 5 and Indigo. Ozone: Science & Engineering, 29(6), 493-502. doi:10.1080/01919510701617959Tanaka, M., Girard, G., Davis, R., Peuto, A., & Bignell, N. (2001). Recommended table for the density of water between 0  C and 40  C based on recent experimental reports. Metrologia, 38(4), 301-309. doi:10.1088/0026-1394/38/4/3Tizaoui, C., & Grima, N. (2011). Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution. Chemical Engineering Journal, 173(2), 463-473. doi:10.1016/j.cej.2011.08.014Von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 37(7), 1443-1467. doi:10.1016/s0043-1354(02)00457-

    Experiencias de aplicación de la simulación empleando software libre y gratuito en la enseñanza de las ingenierías de la rama industrial

    Full text link
    [ES] En este trabajo se presentan las experiencias de utilización de software libre y gratuito llevadas a cabo por el Equipo de Innovación y Calidad Educativa ASEI (Aplicación de la Simulación en la Enseñanza de la Ingeniería) en asignaturas de las áreas de Ingeniería Química, Nuclear y Estadística que requieren la utilización de software de cálculo y herramientas de simulación. El software libre puede ser utilizado como una herramienta en metodologías docentes basadas en el uso de la simulación en el aula de teoría o bien como una forma de disminuir los costes en la enseñanza y aportar nuevos valores. Adecuadamente empleadas, las metodologías basadas en el uso de programas de simulación pueden estimular la capacidad de autoaprendizaje del alumno. En esta comunicación se muestran ejemplos del amplio abanico de aplicaciones de software que se pueden utilizar sin representar coste para la Universidad y posteriormente para la empresa.Santafé Moros, MA.; Gozálvez-Zafrilla, JM.; Navarro-Laboulais, J.; Cardona, SC.; Miró Herrero, R.; García-Díaz, JC. (2014). Experiencias de aplicación de la simulación empleando software libre y gratuito en la enseñanza de las ingenierías de la rama industrial. Editorial Universitat Politècnica de València. 324-342. http://hdl.handle.net/10251/167124S32434

    On identifiability for chemical systems from measurable variables

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10910-013-0149-4The dynamics of the composition of chemical species in reacting systems can be characterized by a set of autonomous differential equations derived from mass conservation principles and some elementary hypothesis related to chemical reactivity. These sets of ordinary differential equations are basically non-linear, their complexity grows as much increases the number of substances present in the reacting media an can be characterized by a set of phenomenological constants which contains all the relevant information about the physical system. The determination of these kinetic constants is critical for the design or control of chemical systems from a technological point of view but the non-linear nature of the equations implies that there are hidden correlations between the parameters which maybe can be revealed with a identifiability analysis.This work has been partially supported by MTM2010-18228.Cantó Colomina, B.; Coll, C.; Sánchez, E.; Cardona Navarrete, SC.; Navarro-Laboulais, J. (2014). On identifiability for chemical systems from measurable variables. Journal of Mathematical Chemistry. 52(4):1023-1035. https://doi.org/10.1007/s10910-013-0149-4S10231035524M.J. Almendral, A. Alonso, M.S. Fuentes, Development of new methodologies for on-line determination of the bromate. J. Environ. Monit. 11, 1381–1388 (2009)A. Ben-Zvi, P.J. McLellan, K.B. McAuley, Identifiability of linear time-invariant differential-algebraic systems. I. The generalized Markov parameter approach. Ind. Eng. Chem. Res. 42, 6607–6618 (2003)T.P. Bonacquisti, A drinking water utility’s perspective on bromide, bromate, and ozonation. Toxicology 221, 145–148 (2006)R. Butler, A. Godley, L. Lytton, E. Cartmell, Bromate environmental contamination: review of impact and possible treatment. Crit. Rev. Environ. Sci. Tech. 35, 193–217 (2005)R. Butler, L. Lytton, A.R. Godley, I.E. Tothill, E. Cartmell, Bromate analysis in groundwater and wastewater samples. J. Environ. Monit. 7, 999–1006 (2005)B. Cantó, S.C. Cardona, C. Coll, J. Navarro-Laboulais, E. Sánchez, Dynamic optimization of a gas-liquid reactor. J. Math. Chem. 50, 381–393 (2012)B. Cantó, C. Coll and E. Sánchez, Identifiability of a class of discretized linear partial differential algebraic equations, Math. Problems Eng. 2011, 1–12 (2011)A. Constantinides, N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications, Alkis Constantinides and Navid Mostoufi, Upper Saddle River (Prentice Hall, New Jersey, 1999)P. Englezos, N. Kalogerakis, Applied Parameter Estimation for Chemical Engineers (Marcel Dekker, New York, 2001)U. von Gunten, Ozonation of drinking water. Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 37, 1469–1487 (2003)B. Legube, B. Parinet, K. Gelinet, F. Berne, J-Ph Croue, Modeling of bromate formation by ozonation of surface waters in drinking water treatment. Water Res. 38, 2185–2195 (2004)Q. Liu, L.M. Schurter, C.E. Muller, S. Aloisio, J.S. Francisco, D.W. Margerum, Kinetics and mechanisms of aqueous ozone reactions with bromide, sulfite, hydrogen sulfite, iodide, and nitrite ions. Inorg. Chem. 40, 4436–4442 (2001)J.B. Rawling, J.G. Ekerdt, Chemical Reactor Analysis and Design Fundamentals (Nob Hill Pub, Madison, 2002)W.E. Stewart, M. Caracotsios, Computer Aided Modelling of Reactive Systems (John Wiley and Sons, New York, 2008)P. Westerhoff, R. Song, G. Amy, R. Minear, Numerical kinetic models for bromide oxidation to bromine and bromate. Water Res. 32, 1687–1699 (1998)World Health Organization, Bromate in Drinking-water, Document WHO/SDE/WSH/05.08/78, http://www.who.int/water_sanitation_health/dwq/chemicals/en/ (accesed 26/07/12

    Ozonation Kinetics of Acid Red 27 Azo Dye: A novel methodology based on artificial neural networks for the determination of dynamic kinetic constants in bubble column reactors

    Full text link
    A procedure for the determination of initial parameter values for quadratically convergent optimization methods is proposed using artificial neural networks coupled with a non-stationary gas-liquid reaction model. The evaluation of the regression and the mean squared error coefficients of the neural network during its training process allow the parameter sensitivity analysis of the gas-liquid model. This analysis examines how many and which parameters of the model will be available depending on the observable information of the mathematical model. Numerical simulations show the relevance of the initial values and the non-linearity of the objective function. The methodology has been applied to the study of the reaction of the azo-dye Acid Red 27 with ozone in acid media. The rate constant is in the order of (1.6 +-0.1) 10^3M^(-1) s ^(-1) under the experimental conditions.J. Ferre-Aracil acknowledges the support of the doctoral fellowship from the Universitat Politecnica de Valencia (UPV-PAID-FPI-2010-04).Ferre Aracil, J.; Cardona, SC.; Navarro-Laboulais, J. (2015). Ozonation Kinetics of Acid Red 27 Azo Dye: A novel methodology based on artificial neural networks for the determination of dynamic kinetic constants in bubble column reactors. Chemical Engineering Communications. 202(3):279-293. https://doi.org/10.1080/00986445.2013.841146S279293202

    Kinetic study of ozone decay in homogeneous phosphate-buffered medium

    Full text link
    The ozone decomposition reaction is analyzed in a homogeneous reactor through in-situ measurement of the ozone depletion. The experiments were carried out at pHs between 1 to 11 in H2PO4-/HPO42 buffers at constant ionic strength (0.1 M) and between 5 and 35 ºC. A kinetic model for ozone decomposition is proposed considering the existence of two chemical subsystems, one accounting for direct ozone decomposition leading to hydrogen peroxide and the second one accounting for the reaction between the hydrogen peroxide with the ozone to give different radical species. The model explains the apparent reaction order respect of the ozone for the entire pH interval. The decomposition kinetics at pH 4.5, 6.1, and 9.0 is analyzed at different ionic strength and the results suggest that the phosphate ions do not act as a hydroxyl radical scavenger in the ozone decomposition mechanism.J. Ferre-Aracil acknowledges the support of the doctoral fellowship from the Universitat Politecnica de Valencia (UPV-PAID-FPI-2010-04).Ferre Aracil, J.; Cardona, SC.; Navarro-Laboulais, J. (2015). Kinetic study of ozone decay in homogeneous phosphate-buffered medium. Ozone: Science and Engineering. 37(4):330-342. https://doi.org/10.1080/01919512.2014.998756S330342374Bezbarua, B. K., & Reckhow, D. A. (2004). Modification of the Standard Neutral Ozone Decomposition Model. Ozone: Science & Engineering, 26(4), 345-357. doi:10.1080/01919510490482179Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O−2 Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 14(4), 1041-1100. doi:10.1063/1.555739Biń, A. K., Machniewski, P., Wołyniec, J., & Pieńczakowska, A. (2013). Modeling of Ozone Reaction with Benzaldehyde Incorporating Ozone Decomposition in Aqueous Solutions. Ozone: Science & Engineering, 35(6), 489-500. doi:10.1080/01919512.2013.821595Black, E. D., & Hayon, E. (1970). Pulse radiolysis of phosphate anions H2PO4-, HPO42-, PO43-, and P2O74- in aqueous solutions. The Journal of Physical Chemistry, 74(17), 3199-3203. doi:10.1021/j100711a007Buehler, R. E., Staehelin, J., & Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 1. Perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3- as intermediates. The Journal of Physical Chemistry, 88(12), 2560-2564. doi:10.1021/j150656a026Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), 513-886. doi:10.1063/1.555805Cantó, B., Cardona, S. C., Coll, C., Navarro-Laboulais, J., & Sánchez, E. (2011). Dynamic optimization of a gas-liquid reactor. Journal of Mathematical Chemistry, 50(2), 381-393. doi:10.1007/s10910-011-9941-1Cantó, B., Coll, C., Sánchez, E., Cardona, S. C., & Navarro-Laboulais, J. (2013). On identifiability for chemical systems from measurable variables. Journal of Mathematical Chemistry, 52(4), 1023-1035. doi:10.1007/s10910-013-0149-4Cardona, S. C., López, F., Abad, A., & Navarro-Laboulais, J. (2010). On bubble column reactor design for the determination of kinetic rate constants in gas-liquid systems. The Canadian Journal of Chemical Engineering, 88(4), 491-502. doi:10.1002/cjce.20327Ershov, B. G., & Gordeev, A. V. (2008). A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2. Radiation Physics and Chemistry, 77(8), 928-935. doi:10.1016/j.radphyschem.2007.12.005Fábián, I. (2006). Reactive intermediates in aqueous ozone decomposition: A mechanistic approach. Pure and Applied Chemistry, 78(8), 1559-1570. doi:10.1351/pac200678081559Ferre-Aracil, J., Cardona, S. C., López, F., Abad, A., & Navarro-Laboulais, J. (2013). Unstationary Film Model for the Determination of Absolute Gas-Liquid Kinetic Rate Constants: Ozonation of Acid Red 27, Acid Orange 7, and Acid Blue 129. Ozone: Science & Engineering, 35(6), 423-437. doi:10.1080/01919512.2013.815104Ferre-Aracil, J., Cardona, S. C., & Navarro-Laboulais, J. (2014). Determination and Validation of Henry’s Constant for Ozone in Phosphate Buffers Using Different Analytical Methodologies. Ozone: Science & Engineering, 37(2), 106-118. doi:10.1080/01919512.2014.927323Gardoni, D., Vailati, A., & Canziani, R. (2012). Decay of Ozone in Water: A Review. Ozone: Science & Engineering, 34(4), 233-242. doi:10.1080/01919512.2012.686354Grasso, D., & Weber, W. J. (1989). Mathematical Interpretation of Aqueous‐phase Ozone Decomposition Rates. Journal of Environmental Engineering, 115(3), 541-559. doi:10.1061/(asce)0733-9372(1989)115:3(541)Gurol, M. D., & Singer, P. C. (1982). Kinetics of ozone decomposition: a dynamic approach. Environmental Science & Technology, 16(7), 377-383. doi:10.1021/es00101a003Kosaka, K., Yamada, H., Matsui, S., Echigo, S., & Shishida, K. (1998). Comparison among the Methods for Hydrogen Peroxide Measurements To Evaluate Advanced Oxidation Processes:  Application of a Spectrophotometric Method Using Copper(II) Ion and 2,9-Dimethyl-1,10-phenanthroline. Environmental Science & Technology, 32(23), 3821-3824. doi:10.1021/es9800784Maruthamuthu, P., & Neta, P. (1978). Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds. The Journal of Physical Chemistry, 82(6), 710-713. doi:10.1021/j100495a019Merényi, G., Lind, J., Naumov, S., & Sonntag, C. von. (2010). Reaction of Ozone with Hydrogen Peroxide (Peroxone Process): A Revision of Current Mechanistic Concepts Based on Thermokinetic and Quantum-Chemical Considerations. Environmental Science & Technology, 44(9), 3505-3507. doi:10.1021/es100277dMerényi, G., Lind, J., Naumov, S., & von Sonntag, C. (2010). The Reaction of Ozone with the Hydroxide Ion: Mechanistic Considerations Based on Thermokinetic and Quantum Chemical Calculations and the Role of HO4−in Superoxide Dismutation. Chemistry - A European Journal, 16(4), 1372-1377. doi:10.1002/chem.200802539Minchew, E. P., Gould, J. P., & Saunders, F. M. (1987). Multistage Decomposition Kinetics of Ozone In Dilute Aqueous Solutions. Ozone: Science & Engineering, 9(2), 165-177. doi:10.1080/01919518708552401Mizuno, T., Tsuno, H., & Yamada, H. (2007). Development of Ozone Self-Decomposition Model for Engineering Design. Ozone: Science & Engineering, 29(1), 55-63. doi:10.1080/01919510601115849Morozov, P. A., & Ershov, B. G. (2010). The influence of phosphates on the decomposition of ozone in water: Chain process inhibition. Russian Journal of Physical Chemistry A, 84(7), 1136-1140. doi:10.1134/s0036024410070101Schick, R., Strasser, I., & Stabel, H.-H. (1997). Fluorometric determination of low concentrations of H2O2 in water: Comparison with two other methods and application to environmental samples and drinking-water treatment. Water Research, 31(6), 1371-1378. doi:10.1016/s0043-1354(96)00410-1Sehested, K., Corfitzen, H., Holcman, J., & Hart, E. J. (1992). Decomposition of ozone in aqueous acetic acid solutions (pH 0-4). The Journal of Physical Chemistry, 96(2), 1005-1009. doi:10.1021/j100181a084Sehested, K., Holcman, J., Bjergbakke, E., & Hart, E. J. (1982). Ultraviolet spectrum and decay of the ozonide ion radical, O3-, in strong alkaline solution. The Journal of Physical Chemistry, 86(11), 2066-2069. doi:10.1021/j100208a031Sehested, K., Holcman, J., Bjergbakke, E., & Hart, E. J. (1984). Formation of ozone in the reaction of hydroxyl with O3- and the decay of the ozonide ion radical at pH 10-13. The Journal of Physical Chemistry, 88(2), 269-273. doi:10.1021/j150646a021Sein, M. M., Golloch, A., Schmidt, T. C., & von Sonntag, C. (2007). No Marked Kinetic Isotope Effect in the Peroxone (H2O2/D2O2+O3) Reaction: Mechanistic Consequences. ChemPhysChem, 8(14), 2065-2067. doi:10.1002/cphc.200700493Sotelo, J. L., Beltran, F. J., Benitez, F. J., & Beltran-Heredia, J. (1987). Ozone decomposition in water: kinetic study. Industrial & Engineering Chemistry Research, 26(1), 39-43. doi:10.1021/ie00061a008Staehelin, J., & Hoigne, J. (1982). Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environmental Science & Technology, 16(10), 676-681. doi:10.1021/es00104a009Weiss, J. (1935). The catalytic decomposition of hydrogen peroxide on different metals. Transactions of the Faraday Society, 31, 1547. doi:10.1039/tf935310154
    corecore