Kinetic study of ozone decay in homogeneous phosphate-buffered medium

Abstract

The ozone decomposition reaction is analyzed in a homogeneous reactor through in-situ measurement of the ozone depletion. The experiments were carried out at pHs between 1 to 11 in H2PO4-/HPO42 buffers at constant ionic strength (0.1 M) and between 5 and 35 ºC. A kinetic model for ozone decomposition is proposed considering the existence of two chemical subsystems, one accounting for direct ozone decomposition leading to hydrogen peroxide and the second one accounting for the reaction between the hydrogen peroxide with the ozone to give different radical species. The model explains the apparent reaction order respect of the ozone for the entire pH interval. The decomposition kinetics at pH 4.5, 6.1, and 9.0 is analyzed at different ionic strength and the results suggest that the phosphate ions do not act as a hydroxyl radical scavenger in the ozone decomposition mechanism.J. Ferre-Aracil acknowledges the support of the doctoral fellowship from the Universitat Politecnica de Valencia (UPV-PAID-FPI-2010-04).Ferre Aracil, J.; Cardona, SC.; Navarro-Laboulais, J. (2015). Kinetic study of ozone decay in homogeneous phosphate-buffered medium. Ozone: Science and Engineering. 37(4):330-342. https://doi.org/10.1080/01919512.2014.998756S330342374Bezbarua, B. K., & Reckhow, D. A. (2004). Modification of the Standard Neutral Ozone Decomposition Model. Ozone: Science & Engineering, 26(4), 345-357. doi:10.1080/01919510490482179Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O−2 Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 14(4), 1041-1100. doi:10.1063/1.555739Biń, A. K., Machniewski, P., Wołyniec, J., & Pieńczakowska, A. (2013). Modeling of Ozone Reaction with Benzaldehyde Incorporating Ozone Decomposition in Aqueous Solutions. Ozone: Science & Engineering, 35(6), 489-500. doi:10.1080/01919512.2013.821595Black, E. D., & Hayon, E. (1970). Pulse radiolysis of phosphate anions H2PO4-, HPO42-, PO43-, and P2O74- in aqueous solutions. The Journal of Physical Chemistry, 74(17), 3199-3203. doi:10.1021/j100711a007Buehler, R. E., Staehelin, J., & Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 1. Perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3- as intermediates. The Journal of Physical Chemistry, 88(12), 2560-2564. doi:10.1021/j150656a026Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), 513-886. doi:10.1063/1.555805Cantó, B., Cardona, S. C., Coll, C., Navarro-Laboulais, J., & Sánchez, E. (2011). Dynamic optimization of a gas-liquid reactor. Journal of Mathematical Chemistry, 50(2), 381-393. doi:10.1007/s10910-011-9941-1Cantó, B., Coll, C., Sánchez, E., Cardona, S. C., & Navarro-Laboulais, J. (2013). On identifiability for chemical systems from measurable variables. Journal of Mathematical Chemistry, 52(4), 1023-1035. doi:10.1007/s10910-013-0149-4Cardona, S. C., López, F., Abad, A., & Navarro-Laboulais, J. (2010). On bubble column reactor design for the determination of kinetic rate constants in gas-liquid systems. The Canadian Journal of Chemical Engineering, 88(4), 491-502. doi:10.1002/cjce.20327Ershov, B. G., & Gordeev, A. V. (2008). A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2. Radiation Physics and Chemistry, 77(8), 928-935. doi:10.1016/j.radphyschem.2007.12.005Fábián, I. (2006). Reactive intermediates in aqueous ozone decomposition: A mechanistic approach. Pure and Applied Chemistry, 78(8), 1559-1570. doi:10.1351/pac200678081559Ferre-Aracil, J., Cardona, S. C., López, F., Abad, A., & Navarro-Laboulais, J. (2013). Unstationary Film Model for the Determination of Absolute Gas-Liquid Kinetic Rate Constants: Ozonation of Acid Red 27, Acid Orange 7, and Acid Blue 129. Ozone: Science & Engineering, 35(6), 423-437. doi:10.1080/01919512.2013.815104Ferre-Aracil, J., Cardona, S. C., & Navarro-Laboulais, J. (2014). Determination and Validation of Henry’s Constant for Ozone in Phosphate Buffers Using Different Analytical Methodologies. Ozone: Science & Engineering, 37(2), 106-118. doi:10.1080/01919512.2014.927323Gardoni, D., Vailati, A., & Canziani, R. (2012). Decay of Ozone in Water: A Review. Ozone: Science & Engineering, 34(4), 233-242. doi:10.1080/01919512.2012.686354Grasso, D., & Weber, W. J. (1989). Mathematical Interpretation of Aqueous‐phase Ozone Decomposition Rates. Journal of Environmental Engineering, 115(3), 541-559. doi:10.1061/(asce)0733-9372(1989)115:3(541)Gurol, M. D., & Singer, P. C. (1982). Kinetics of ozone decomposition: a dynamic approach. Environmental Science & Technology, 16(7), 377-383. doi:10.1021/es00101a003Kosaka, K., Yamada, H., Matsui, S., Echigo, S., & Shishida, K. (1998). Comparison among the Methods for Hydrogen Peroxide Measurements To Evaluate Advanced Oxidation Processes:  Application of a Spectrophotometric Method Using Copper(II) Ion and 2,9-Dimethyl-1,10-phenanthroline. Environmental Science & Technology, 32(23), 3821-3824. doi:10.1021/es9800784Maruthamuthu, P., & Neta, P. (1978). Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds. The Journal of Physical Chemistry, 82(6), 710-713. doi:10.1021/j100495a019Merényi, G., Lind, J., Naumov, S., & Sonntag, C. von. (2010). Reaction of Ozone with Hydrogen Peroxide (Peroxone Process): A Revision of Current Mechanistic Concepts Based on Thermokinetic and Quantum-Chemical Considerations. Environmental Science & Technology, 44(9), 3505-3507. doi:10.1021/es100277dMerényi, G., Lind, J., Naumov, S., & von Sonntag, C. (2010). The Reaction of Ozone with the Hydroxide Ion: Mechanistic Considerations Based on Thermokinetic and Quantum Chemical Calculations and the Role of HO4−in Superoxide Dismutation. Chemistry - A European Journal, 16(4), 1372-1377. doi:10.1002/chem.200802539Minchew, E. P., Gould, J. P., & Saunders, F. M. (1987). Multistage Decomposition Kinetics of Ozone In Dilute Aqueous Solutions. Ozone: Science & Engineering, 9(2), 165-177. doi:10.1080/01919518708552401Mizuno, T., Tsuno, H., & Yamada, H. (2007). Development of Ozone Self-Decomposition Model for Engineering Design. Ozone: Science & Engineering, 29(1), 55-63. doi:10.1080/01919510601115849Morozov, P. A., & Ershov, B. G. (2010). The influence of phosphates on the decomposition of ozone in water: Chain process inhibition. Russian Journal of Physical Chemistry A, 84(7), 1136-1140. doi:10.1134/s0036024410070101Schick, R., Strasser, I., & Stabel, H.-H. (1997). Fluorometric determination of low concentrations of H2O2 in water: Comparison with two other methods and application to environmental samples and drinking-water treatment. Water Research, 31(6), 1371-1378. doi:10.1016/s0043-1354(96)00410-1Sehested, K., Corfitzen, H., Holcman, J., & Hart, E. J. (1992). Decomposition of ozone in aqueous acetic acid solutions (pH 0-4). The Journal of Physical Chemistry, 96(2), 1005-1009. doi:10.1021/j100181a084Sehested, K., Holcman, J., Bjergbakke, E., & Hart, E. J. (1982). Ultraviolet spectrum and decay of the ozonide ion radical, O3-, in strong alkaline solution. The Journal of Physical Chemistry, 86(11), 2066-2069. doi:10.1021/j100208a031Sehested, K., Holcman, J., Bjergbakke, E., & Hart, E. J. (1984). Formation of ozone in the reaction of hydroxyl with O3- and the decay of the ozonide ion radical at pH 10-13. The Journal of Physical Chemistry, 88(2), 269-273. doi:10.1021/j150646a021Sein, M. M., Golloch, A., Schmidt, T. C., & von Sonntag, C. (2007). No Marked Kinetic Isotope Effect in the Peroxone (H2O2/D2O2+O3) Reaction: Mechanistic Consequences. ChemPhysChem, 8(14), 2065-2067. doi:10.1002/cphc.200700493Sotelo, J. L., Beltran, F. J., Benitez, F. J., & Beltran-Heredia, J. (1987). Ozone decomposition in water: kinetic study. Industrial & Engineering Chemistry Research, 26(1), 39-43. doi:10.1021/ie00061a008Staehelin, J., & Hoigne, J. (1982). Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environmental Science & Technology, 16(10), 676-681. doi:10.1021/es00104a009Weiss, J. (1935). The catalytic decomposition of hydrogen peroxide on different metals. Transactions of the Faraday Society, 31, 1547. doi:10.1039/tf935310154

    Similar works

    Full text

    thumbnail-image

    Available Versions