1,540 research outputs found

    Dynamic Moment Analysis of the Extracellular Electric Field of a Biologically Realistic Spiking Neuron

    Get PDF
    Based upon the membrane currents generated by an action potential in a biologically realistic model of a pyramidal, hippocampal cell within rat CA1, we perform a moment expansion of the extracellular field potential. We decompose the potential into both inverse and classical moments and show that this method is a rapid and efficient way to calculate the extracellular field both near and far from the cell body. The action potential gives rise to a large quadrupole moment that contributes to the extracellular field up to distances of almost 1 cm. This method will serve as a starting point in connecting the microscopic generation of electric fields at the level of neurons to macroscopic observables such as the local field potential

    Charge asymmetry in high-energy μ+μ\mu^+\mu^- photoproduction in the electric field of a heavy atom

    Get PDF
    The charge asymmetry in the differential cross section of high-energy μ+μ\mu^+\mu^- photoproduction in the electric field of a heavy atom is obtained. This asymmetry arises due to the Coulomb corrections to the amplitude of the process (next-to-leading term with respect to the atomic field). The deviation of the nuclear electric field from the Coulomb field at small distances is crucially important for the charge asymmetry. Though the Coulomb corrections to the total cross section are negligibly small, the charge asymmetry is measurable for selected final states of μ+\mu^+ and μ\mu^-. We further discuss the feasibility for experimental observation of this effect.Comment: 6 pages, 3 figure

    The Nature of Superfluidity in Ultracold Fermi Gases Near Feshbach Resonances

    Get PDF
    We study the superfluid state of atomic Fermi gases using a BCS-BEC crossover theory. Our approach emphasizes non-condensed fermion pairs which strongly hybridize with their (Feshbach-induced) molecular boson counterparts. These pairs lead to pseudogap effects above TcT_c and non-BCS characteristics below. We discuss how these effects influence the experimental signatures of superfluidity.Comment: 4 pages, 3 figures, submitted to PRA Rapid Communications; introduction rewritten, figure replace

    Protein-mediated DNA Loop Formation and Breakdown in a Fluctuating Environment

    Full text link
    Living cells provide a fluctuating, out-of-equilibrium environment in which genes must coordinate cellular function. DNA looping, which is a common means of regulating transcription, is very much a stochastic process; the loops arise from the thermal motion of the DNA and other fluctuations of the cellular environment. We present single-molecule measurements of DNA loop formation and breakdown when an artificial fluctuating force, applied to mimic a fluctuating cellular environment, is imposed on the DNA. We show that loop formation is greatly enhanced in the presence of noise of only a fraction of kBTk_B T, yet find that hypothetical regulatory schemes that employ mechanical tension in the DNA--as a sensitive switch to control transcription--can be surprisingly robust due to a fortuitous cancellation of noise effects

    Classical field techniques for condensates in one-dimensional rings at finite temperatures

    Full text link
    For a condensate in a one-dimensional ring geometry, we compare the thermodynamic properties of three conceptually different classical field techniques: stochastic dynamics, microcanonical molecular dynamics, and the classical field method. Starting from non-equilibrium initial conditions, all three methods approach steady states whose distribution and correlation functions are in excellent agreement with an exact evaluation of the partition function in the high-temperature limit. Our study helps to establish these various classical field techniques as powerful non-perturbative tools for systems at finite temperatures.Comment: 7 pages, 7 figures; minor changes, one reference adde

    Feshbach resonances and collapsing Bose-Einstein condensates

    Full text link
    We investigate the quantum state of burst atoms seen in the recent Rb-85 experiments at JILA. We show that the presence of a resonance scattering state can lead to a pairing instability generating an outflow of atoms with energy comparable to that observed. A resonance effective field theory is used to study this dynamical process in an inhomogeneous system with spherical symmetry

    Virtual light-by-light scattering and the g factor of a bound electron

    Full text link
    The contribution of the light-by-light diagram to the g factor of electron and muon bound in Coulomb field is obtained. For electron in a ground state, our results are in good agreement with the results of other authors obtained numerically for large Z. For relatively small Z our results have essentially higher accuracy as compared to the previous ones. For muonic atoms, the contribution is obtained for the first time with the high accuracy in whole region of Z.Comment: 10 pages, 3 figures, RevTe

    Corrections to deuterium hyperfine structure due to deuteron excitations

    Full text link
    We consider the corrections to deuterium hyperfine structure originating from the two-photon exchange between electron and deuteron, with the deuteron excitations in the intermediate states. In particular, the motion of the two intermediate nucleons as a whole is taken into account. The problem is solved in the zero-range approximation. The result is in good agreement with the experimental value of the deuterium hyperfine splitting.Comment: 7 pages, LaTe

    Bose-Einstein Condensation from a Rotating Thermal Cloud: Vortex Nucleation and Lattice Formation

    Get PDF
    We develop a stochastic Gross-Pitaveskii theory suitable for the study of Bose-Einstein condensation in a {\em rotating} dilute Bose gas. The theory is used to model the dynamical and equilibrium properties of a rapidly rotating Bose gas quenched through the critical point for condensation, as in the experiment of Haljan et al. [Phys. Rev. Lett., 87, 21043 (2001)]. In contrast to stirring a vortex-free condensate, where topological constraints require that vortices enter from the edge of the condensate, we find that phase defects in the initial non-condensed cloud are trapped en masse in the emerging condensate. Bose-stimulated condensate growth proceeds into a disordered vortex configuration. At sufficiently low temperature the vortices then order into a regular Abrikosov lattice in thermal equilibrium with the rotating cloud. We calculate the effect of thermal fluctuations on vortex ordering in the final gas at different temperatures, and find that the BEC transition is accompanied by lattice melting associated with diminishing long range correlations between vortices across the system.Comment: 15 pages, 12 figure
    corecore