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The charge asymmetry in the differential cross section of high-energy μ+μ− photoproduction in the
electric field of a heavy atom is obtained. This asymmetry arises due to the Coulomb corrections to
the amplitude of the process (next-to-leading term with respect to the atomic field). The deviation of
the nuclear electric field from the Coulomb field at small distances is crucially important for the charge
asymmetry. Though the Coulomb corrections to the total cross section are negligibly small, the charge
asymmetry is measurable for selected final states of μ+ and μ−. We further discuss the feasibility for
experimental observation of this effect.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

Photoproduction of muon pairs off heavy nuclei is one of the
most interesting and important QED processes. The Born approxi-
mation cross section is known for arbitrary energy ω of the incom-
ing photon, Refs. [1,2] (we set h̄ = c = 1 throughout the Letter).
The Born cross section is proportional to the square of the nuclear
form factor F (Q 2) and is sensitive to its shape since, for a heavy
nucleus, the Compton wavelength of muon, λμ = 1/m = 1.87 fm,
is less than the nuclear radius, R = 7.3 fm for gold and R = 7.2 fm
for lead, m is the muon mass. Usually, for heavy atoms, one must
account for the higher-order terms in the perturbative expan-
sion with respect to the parameter η = Zα (Coulomb corrections),
where Z is the atomic charge number, α = e2 ≈ 1/137 is the
fine-structure constant, and e is the electron charge. The Coulomb
corrections to the total cross section of muon pair photoproduc-
tion were discussed in a set of publications [3–5]. In contrast
to the Born cross section, where the main contribution is given
by the impact parameter ρ in the region R � ρ � ω2/m, the
main contribution to the Coulomb corrections stems from region
ρ ∼ λμ � R . Thus, the Coulomb corrections to the total cross sec-
tion are strongly suppressed by the form factor. Therefore, one may
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expect that this statement is also valid for all quantities related to
the Coulomb corrections. In this Letter we show that this is, in fact,
not the case. We consider the charge asymmetry in the differential
cross section dσ(p,q, η) of high energy μ+μ− photoproduction
off a heavy atom, where p and q are the momenta of μ− and μ+ ,
respectively, ω � m. The charge asymmetry A is defined as

A = dσa(p,q, η)

dσs(p,q, η)
,

dσs(p,q, η) = dσ(p,q, η) + dσ(q, p, η)

2
,

dσa(p,q, η) = dσ(p,q, η) − dσ(q, p, η)

2
. (1)

It follows from charge parity conservation that dσ(p,q, η) =
dσ(q, p,−η), so that dσs(p,q, η) is an even function of η and
dσa(p,q, η) is an odd function of η. For ω � m, small angles be-
tween the vectors p, q, and incoming photon momentum k, it
is possible to make use of the quasiclassical approximation. The
Coulomb corrections for the high energy e+e− photoproduction
cross section were obtained in the leading quasiclassical approxi-
mation in Refs. [6,7]. In this case the nuclear form factor correction
is negligible, and for a heavy nucleus the terms to all orders in the
parameter η should be taken into account. However, in the leading
quasiclassical approximation dσa(p,q, η) = 0, i.e., charge asymme-
try is absent. The Coulomb corrections to the spectrum and to the
total cross section of e+e− photoproduction in a strong atomic
field were derived in the next-to-leading quasiclassical approxima-
tion in Ref. [8]. The Coulomb corrections to the differential cross
.
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section were derived in the next-to-leading quasiclassical approx-
imation in Ref. [9], where the charge asymmetry A was studied
in detail in all orders in η. Since the electron Compton wave-
length λe is much larger than the nuclear radius R , the results
of Ref. [9] were obtained for a pure Coulomb field. For μ+μ− high
energy photoproduction, the structure of the Coulomb corrections
to the differential cross section is different. When the momentum
transfer Q ⊥ � 1/R the form factor dependence strongly suppresses
the cross section. Here Q = p + q − k, Q ⊥ = Q − ( Q · ν)ν ,
and ν = k/ω. Therefore, to have the noticeable charge asymme-
try and the noticeable cross section, we should consider the region
Q ⊥ � 1/R , but p⊥ ∼ q⊥ ∼ m � Q ⊥ , so that |p⊥ +q⊥| � |p⊥ −q⊥|.
As was shown in Ref. [9], in this region only the term ∝ η3 sur-
vives in the expansion of the Coulomb corrections in η even for
η ∼ 1. In the present Letter, we calculate dσa(p,q, η) ∝ η3 in the
region |p⊥ +q⊥| � |p⊥ −q⊥| taking into account the nuclear form
factor correction. This term gives rise to the charge asymmetry
A ∝ η. We show that A and dσs(p,q, η) ∝ η2 are large enough
to be observed experimentally. The possibility of experimental ob-
servation of the charge asymmetry is discussed in detail. We also
note that for p⊥ � m, and q⊥ � m, dσa was also investigated in
Ref. [10] in scalar electrodynamics.

2. General discussion

The cross section for μ+μ− pair production by a high-energy
photon in an external field reads (see, e.g., Ref. [11])

dσ = α

(2π)4ω
dp⊥ dq⊥ dεp |Mλ1λ2λ3 |2, (2)

where εp = √
p2 + m2, εq + εp = ω, p and q are the μ− and μ+

momenta, respectively, p⊥ and q⊥ are components of the vectors
p and q perpendicular to the photon momentum k. The matrix
element Mλ1λ2λ3 has the form

Mλ1λ2λ3 =
∫

dr ū(out)
λ1 p (r)γ · eλ3 v(in)

λ2q(r)exp (ik · r). (3)

Here u(out)
λ1 p (r) is a positive-energy solution and v(in)

λ2q(r) is a
negative-energy solution of the Dirac equation in the external field,
λ1 = ±1 and λ2 = ±1 enumerate the independent solutions of the
Dirac equation, and λ3 = ±1 enumerates the photon polarization
vector, eλ3 , γ μ are the Dirac matrices. Note that the asymptotic

form of u(out)
λp (r) at large r contains the plane wave and the spher-

ical convergent wave, while the asymptotic form of v(in)
λq (r) at

large r contains the plane wave and the spherical divergent wave.
It is convenient to find the solutions of the Dirac equation in

the atomic potential V (r), using the relations (see, e.g., [9])

exp(ipr2)

4πr2
ū(out)

λp (r1) = − lim
r2→∞

1

2εp
ūλpγ

0G(r2, r1|εp),

p = pn2,

exp(ipr1)

4πr1
v(in)

λp (r2) = lim
r1→∞

1

2εp
G(r2, r1| − εp)γ 0 vλp,

p = pn1,

uλp =
√

εp + m

2εp

(
φλ

σ ·p
εp+m φλ

)
,

vλp =
√

εp + m

2εp

( σ ·p
εp+mχλ

χλ

)
, (4)

where n1 = r1/r1, n2 = r2/r2, and G(r2, r1|ε) is the Green func-
tion of the Dirac equation in the atomic potential V (r). We ex-
press the wave functions via the asymptotics of the Green function
D(r2, r1|ε) of the squared Dirac equation,
D(r2, r1|ε) = 〈r2|
[(

ε − V (r)
)2 − p2 − m2

+ iα · ∇V (r) + i0
]−1|r1〉, (5)

where α = γ 0γ and |r1,2〉 are normalized as 〈r2|r1〉 = δ(r2 − r1).
Using the relation

G(r2, r1|ε) = [
γ 0(ε − V (r2)

) + iγ · ∇2→ +m
]

D(r2, r1|ε),

G(r2, r1|ε) = D(r2, r1|ε)
[
γ 0(ε − V (r1)

) − iγ · ∇1← +m
]
, (6)

where ∇2→ denotes the gradient over r2 acting to the right, while
∇1← denotes the gradient over r1 acting to the left. Using Eqs. (6)
and (4), we arrive at the following result for the wave functions

exp(ipr2)

4πr2
ū(out)

λp (r2) = − lim
r2→∞ ūλp D(r2, r1|εp),

p = pn2,

exp(ipr1)

4πr1
v(in)

λp (r2) = − lim
r1→∞ D(r2, r1| − εp)vλp,

p = pn1. (7)

It follows from Eqs. (5) and (7) that the wave functions ū(out)
λ1 p (r)

and v(in)
λ2q(r) have the form,

ū(out)
λ1 p (r) = ūλ1 p

[
f0(p, r) − α · f 1(p, r) − Σ · f 2(p, r)

]
,

v(in)
λ2q(r) = [

g0(q, r) + α · g1(q, r) + Σ · g2(q, r)
]
vλ2q. (8)

The term with γ 5 does not appear because it is impossible to
construct a pseudoscalar using two vectors, p and r. The func-
tions f0(p, r), f 1(p, r), and f 2(p, r) may be obtained from the
corresponding functions g0(q, r), g1(q, r), and g2(q, r) by the re-
placement q → p and V (r) → −V (r). Note that the perturbation
expansion of the functions f0(p, r), f 1(p, r), and f 2(p, r) starts
from the terms V 0, V 1 and V 2, respectively. In particular, for
V = 0, f0(p, r) = exp(−i pr) and g0(q, r) = exp(−iqr).

Let us introduce the quantities

(A00, A01, A10, A02, A20)

=
∫

dr exp (ik · r)( f0 g0, f0 g1, f 1 g0, f0 g2, f 2 g0). (9)

In terms of these quantities, we find

S = 1

2

∑
λ1,λ2,λ3=±1

|Mλ1λ2λ3 |2 = 2(S0 + S1),

S0 = 1

4

[(
mω

εpεq

)2

+ θ2
p + θ2

q

]
|A00|2 + |A01|2 + |A10|2

+ Re A∗
00(θ p · A10 + θq · A01),

S1 = − Im
{[

A∗
20 × (θ p A00 + 2A10)

] · ν
+ [

A∗
02 × (θq A00 + 2A01)

] · ν}
, (10)

where ν = k/ω, θ p = p⊥/εp , θq = q⊥/εq . In deriving Eq. (10) we
sum over the polarization of the μ+ and μ− and average over the
photon polarization. The expression for S is very convenient for
further consideration. It is obtained in the quasiclassical approxi-
mation with the first quasiclassical correction taken into account.
Both terms, the leading term and the correction, are exact in the
atomic field. For high energy μ+μ− photoproduction, as it was
discussed above, for the symmetric part of the cross section it is
sufficient to use the Born result (∝ V 2), while for the antisymmet-
ric part of the cross section we use the term ∝ V 3. Note that the
perturbation expansion of A00, A10, and A01 starts from the terms
∝ V , and the expansion of A20, and A02 starts from the terms
∝ V 2.
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Fig. 1. Diagrams of the perturbation theory for the wave function following from
the expansion of the Green function D , Eq. (5). The dashed line corresponds to the
operator 2εV (r) − i(α · ∇)V (r), and seagull corresponds to the operator −V 2(r).

3. Calculation of the matrix elements and cross section

Using the conventional perturbation theory for the Green func-
tion D , Eq. (5), and the expressions (7), we obtain for the wave
functions the perturbative expansion symbolically depicted in
Fig. 1. Using Eq. (9), we find for the terms linear in the poten-
tial,

A(1)
00 = 2εpεq V F (Q 2)

ωm2
(ξp − ξq), A(1)

01 = −εp V F (Q 2)

ωm2
ξp Q ,

A(1)
10 = εq V F (Q 2)

ωm2
ξq Q ,

ξp = 1

1 + δ2
p
, ξq = 1

1 + δ2
q
, δp = εpθ p

m
, δq = εqθq

m
,

Q = p + q − k. (11)

Here V F (Q ) is the Fourier transformation of the potential V (r),
V F (Q 2) = −4πηF (Q 2)/Q 2, where F (Q 2) is the form factor
which differs essentially from unity at Q � 1/R and Q � 1/rscr ,
where R is the nuclear radius and rscr is the screening radius. For
μ+μ− photoproduction, the effect of screening is negligible.

From Eqs. (10) and (11) we find the well known result for the
leading term in dσs (see, e.g., [11]):

dσs = 2αm2 dεp dδp dδq

(2π)4ω3
V F

2(Q 2)[ Q 2

m2
ξpξq

(
ε2

p + ε2
q

)
+ 2εpεq(ξp − ξq)

2
]
. (12)

We now calculate the next-to-leading quasiclassical correction to
the cross section. This correction is proportional to V 3 and arises
from the interference between the leading term of the matrix el-
ement ∝ V and the next-to-leading term ∝ V 2. Since A(1)

00 , A(1)
01 ,

and A(1)
10 are the real quantities, one should calculate the real parts

of A(2)
00 , A(2)

01 , A(2)
10 , and the imaginary parts of A(2)

02 and A(2)
20 , see

Eq. (10). A straightforward calculation gives

Re A(2)
00 = εpξp + εqξq

ωm2
( J0 − J1),

Re A(2)
01 = εpξp

2εqωm2
J1 Q , Re A(2)

10 = εqξq

2εpωm2
J1 Q ,

Im A(2)
02 = εpξp

2εqωm2
J0[ν × Q ],

Im A(2)
20 = εqξq

2εpωm2
J0[ν × Q ],

J0 =
∫

ds

(2π)3
V F (χ+)V F (χ−),

J1 =
∫

ds

(2π)3

(
4s2‖ − Q 2)V F (χ+)V ′

F (χ−),

χ± = (s ± Q /2)2, s‖ = s · Q /Q (13)

where V ′
F (χ) = ∂V F (χ)/∂χ . Using Eqs. (11), (13) and (10), we ob-

tain the antisymmetric part of the cross section,
Fig. 2. The dependence of the function F(Q ) on Q for lead (Z = 82). The solid
curve corresponds to the real charge distribution, the dashed curve is given by
Eq. (15) with Λ = 60 MeV.

dσa = αm2 dεp dδp dδq

(2π)4ω3

×
{
(ξp − ξq)

[
4(εpξp + εqξq) + ω(ε2

p + ε2
q )

εpεq

]

+ (εp − εq)
(ε2

p + ε2
q )

εpεq

Q 2

m2
ξpξq

}
V F

(
Q 2)( J0 − J1). (14)

For the Coulomb field, the calculation yields J0 = 2π2η2/Q , and
J1 = 0. Thus, our result is in agreement with the result obtained
in Ref. [9]. In the formula for the charge asymmetry, A= dσa/dσs ,
the dependence on the nuclear radius enters via the ratio ( J0 −
J1)/V F (Q 2). Very often the form factor is approximated by the
formula F0(Q 2) = 1/(1 + Q 2/Λ2), where Λ ≈ 80 MeV for heavy
nuclei. This approximation gives an accurate result up to 60 MeV.
In this case the function F(Q ) = −2( J0 − J1)/(πηQ V F (Q 2)) has
the simple form

F(Q ) = (
1 + x2)[1 + 2

π
arcsin

(
x√

x2 + 4

)

− 4

π
arcsin

(
x√

x2 + 1

)]
− 12x

π(4 + x2)
, x = Q

Λ
. (15)

At Q � Λ, we have F(Q ) ≈ 1 − 6Q
πΛ

, so that the function F(Q )

diminishes rapidly with increasing Q . In Fig. 2 we show the de-
pendence of the function F(Q ) on Q for lead (Z = 82). The solid
curve corresponds to the real charge distribution, while the dashed
curve is given by Eq. (15) with Λ = 60 MeV.

For Q � |p⊥ − q⊥|, the formula (14) simplifies to

dσa = αm2dεp dδp dδq

(2π)4ω2
(ξp − ξq)

×
[

2(ξp + ξq) + (ε2
p + ε2

q )

εpεq

]
V F

(
Q 2)( J0 − J1). (16)

And we obtain for the charge asymmetry

A = πηmωκ(ξp + ξq + B)

4εpεq(B + κ2ξpξq)
F(Q ),

B = ε2
p + ε2

q

2εpεq
, κ = m(ξq − ξp)

Q ξpξq
. (17)

Let χ is the angle between the vectors p⊥ and −q⊥ . In order to
estimate A, let us consider the region of interest from the exper-
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Table 1
Proposed kinematical conditions.

JLab Mainz

Beam energy 2.2 GeV 1.5 GeV
Current 50 μA 5 μA
Detector package HRS + Septa magnets (see text) Dedicated (see text)
Detector angle 5◦ 5◦
Target 238U (25 μm) 238U (25 μm)

imental point of view, |χ | � |εp − εq|/ω � 1 and |θp − θq|/|θp +
θq| � |εp − εq|/ω. In this region,

A = πηθ(1 + 2ξ)

(1 + 4ξ2δ2)
F

(
θ |εp − εq|

)
sgn(εp − εq),

θ = 1

2
(θp + θq), δ = ωθ

2m
, ξ = 1

1 + δ2
, (18)

and all of the dependence on εp − εq is contained in the func-
tion F . Since Eq. (17) is valid for all η � 1, the prefactor of F in
Eq. (18) can easily reach ten percent or more.

4. Possibility of experimental observation

The above calculations clearly show that the size of the asym-
metry is within reach of current experimental capabilities, suggest-
ing a possible measurement. Due to the low cross section, however,
no current photon facility has the required photon beam flux for
such a measurement. We thus propose to make use of an electron
beam to provide the (virtual) photon flux, where we may calculate
the equivalent photon flux close to the end-of-spectrum using the
approximation, see, e.g., Refs. [12,13]:

Nγ = α

π

�

E
ln

(
�

me

)
Ne, (19)

where Nγ (Ne) is the photon (electron) flux, E is the electron
beam energy, me is the electron mass, and � is the region of in-
tegration around the endpoint. Eq. (19) is valid for me � � � E .
We identify two facilities with experimental capabilities suitable
for the proposed measurement. Those are the experimental Hall A
at the Thomas Jefferson National Accelerator Facility [14], and the
A1 experimental hall at the Mainzer Mikrotron [15]. We work in
a region where the muon angles are equal, θ+

μ = θ−
μ , and the sum

of the muon energies is close to the beam energy, E+
μ + E−

μ ∼ E ,
so that the momentum transfer to the recoiling nucleus is mini-
mal, making the asymmetry essentially independent of the nuclear
form factor. The proposed kinematic conditions for both facilities
are summarized in Table 1. We assume a conservative solid an-
gle of 0.3 msr for each of the detectors, an energy bin of 10 MeV,
and select events where the sum of the muon energies is within
10 MeV of the beam energy,

E − (Eμ+ + Eμ−) � 10 MeV. (20)

Fig. 3 shows the calculated asymmetry and projected asymmetry
as a function of δ = Eμ+ − Eμ− for the aforementioned kinemat-
ics, where we assume 3 h of beam time for each of the data
points. The proposed JLab experimental setup is essentially identi-
cal (except for the target) to the already approved JLab experiment
E12-10-009 (APEX) [16], searching for massive vector bosons (dark
photons) [17]. Thus, the proposed measurement can be trivially
conducted jointly with the APEX experiment. The MAMI/A1 detec-
tor setup is currently unsuitable for the proposed experiment, due
to the constraints on the possible detector angles, thus, a dedicated
detector setup would be required. Due to the relaxed requirement
on the particle detection (muons with energies between about
Fig. 3. Calculated asymmetries and projected uncertainties for the experimental con-
ditions described in the text. Triangles correspond to E = 2200 MeV, θ = 5◦ (JLab);
squares correspond to E = 1500 MeV, θ = 5◦ (Mainz).

500 MeV and 1 GeV and a small solid angle) such a detector setup
is relatively easy to construct or obtain, as an example we men-
tion the di-electron production experiment, currently scheduled
at the HIGS facility, which makes use of an appropriate detector
setup and which is expected to conclude data taking during 2014
or 2015. Fig. 3 clearly demonstrates the viability of such an ex-
periment, which will be the first to accurately measure di-muon
production off heavy nuclei, where the parameter η is not small.
Also note that in these experimental conditions it is possible to
observe a second sign reversal of the asymmetry, which happens
due to cancellation in the function F(Q ) (see Fig. 2).

5. Conclusion

We have derived the charge asymmetry A in the process of
μ+μ− photoproduction in the electric field of a heavy atom. This
asymmetry is related to the first quasiclassical correction to the
differential cross section of the process. In the experimental region
of interest, where Q � |p⊥ − q⊥|, Q ∼ 1/R , and p⊥ ∼ q⊥ ∼ 1/m,
the asymmetry A can be as large as a few tens of percent. In
this region our result is valid even for η ∼ 1. Since λμ � R , the
charge asymmetry is very sensitive to the shape of the nuclear
form factor and may be used to validate or perform measure-
ments of these form factors. Additionally, measurements of A can
be used to investigate not only the nuclear form factor, but also to
search for new massive particles such as dark photons [17], and by
comparing results from electron and muon production, test lepton
universality. Finally, we have demonstrated that the experimental
observation of the charge asymmetry in μ+μ− photoproduction in
the electric field of heavy atoms is a realistic task and suggested an
experimental configuration which will allow such a measurement.

Acknowledgements

The work of R.N.L. and A.I.M. has been supported in part by the
Ministry of Education and Science of the Russian Federation. This
work has also been funded, in part, by the US National Science
Foundation (Grant No. 1309130). A.I.M. thanks the Lady Davis Fel-
lowship Trust and the Racah Institute of Physics at the Hebrew
University of Jerusalem for financial support and kind hospitality.

References

[1] H.A. Bethe, W. Heitler, Proc. R. Soc. Lond. Ser. A 146 (1934) 83.
[2] G. Racah, Nuovo Cimento 11 (1934) 461.

http://refhub.elsevier.com/S0370-2693(13)01024-1/bib424831393334s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib526163616831393334s1


E.J. Downie et al. / Physics Letters B 728 (2014) 645–649 649
[3] D. Ivanov, K. Melnikov, Phys. Rev. D 57 (1998) 4025.
[4] K. Hencken, E.A. Kuraev, V.G. Serbo, Phys. Rev. C 75 (2007) 034903.
[5] U.D. Jentschura, V.G. Serbo, Eur. Phys. J. C 64 (2009) 309.
[6] H.A. Bethe, L.C. Maximon, Phys. Rev. 93 (1954) 768.
[7] H. Davies, H.A. Bethe, L.C. Maximon, Phys. Rev. 93 (1954) 788.
[8] R.N. Lee, A.I. Milstein, V.M. Strakhovenko, Phys. Rev. A 69 (2004) 022708.
[9] R.N. Lee, A.I. Milstein, V.M. Strakhovenko, Phys. Rev. A 85 (2012) 042104.

[10] S.J. Brodsky, J.R. Gillespie, Phys. Rev. 173 (1968) 1011.
[11] V.B. Berestetski, E.M. Lifshits, L.P. Pitayevsky, Quantum Electrodynamics, Perga-

mon, Oxford, 1982.
[12] V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15C (1975) 181.
[13] V.N. Baier, V.S. Fadin, V.A. Khoze, E.A. Kuraev, Phys. Rep. 78 (1981) 293.
[14] J. Alcorn, B.D. Anderson, K.A. Aniol, J.R.M. Annand, L. Auerbach, J. Arrington,

T. Averett, F.T. Baker, et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel.
Spectrom. Detect. Assoc. Equip. 522 (2004) 294.

[15] K.I. Blomqvist, W.U. Boeglin, R. Bohm, M. Distler, R. Edelhoff, J. Friedrich,
R. Geiges, P. Jennewein, et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel.
Spectrom. Detect. Assoc. Equip. 403 (1998) 263.

[16] Jefferson Lab Experiment E12-10-009, http://hallaweb.jlab.org/experiment/
APEX/.

[17] J.D. Bjorken, R. Essig, P. Schuster, N. Toro, Phys. Rev. D 80 (2009) 075018, arXiv:
0906.0580 [hep-ph].

http://refhub.elsevier.com/S0370-2693(13)01024-1/bib494D3938s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib484B533037s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib4A533039s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib424D31393534s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib44424D31393534s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib4C4D5332303034s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib4C4D5332303132s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib427247696C3638s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib424C503832s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib424C503832s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib42474D533735s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib42464B4B3831s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib416C636F726E3A323030347362s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib416C636F726E3A323030347362s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib416C636F726E3A323030347362s1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib426C6F6D71766973743A31393938786Es1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib426C6F6D71766973743A31393938786Es1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib426C6F6D71766973743A31393938786Es1
http://hallaweb.jlab.org/experiment/APEX/
http://hallaweb.jlab.org/experiment/APEX/
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib426A6F726B656E3A323030396D6Ds1
http://refhub.elsevier.com/S0370-2693(13)01024-1/bib426A6F726B656E3A323030396D6Ds1

	Charge asymmetry in high-energy μ+μ- photoproduction in the electric ﬁeld of a heavy atom
	1 Introduction
	2 General discussion
	3 Calculation of the matrix elements and cross section
	4 Possibility of experimental observation
	5 Conclusion
	Acknowledgements
	References


