3,172 research outputs found
Tetrahedral Symmetry in Ground- and Low-Lying States of Exotic A ~ 110 Nuclei
Recent theoretical calculations predict a possible existence of nuclei with
tetrahedral symmetry: more precisely, the mean-field hamiltonians of such
nuclei are symmetric with respect to double point-group Td. In this paper, we
focus on the neutron-rich Zirconium isotopes as an example and present
realistic mean-field calculations which predict tetrahedral ground-state
configurations in 108,110Zr and low-lying excited states of tetrahedral
symmetry in a number of N > 66 isotopes. The motivations for focusing on these
nuclei, as well as a discussion of the possible experimental signatures of
tetrahedral symmetry are also presented.Comment: Accepted in Phys. Rev. C - Rapid Communication
Nuclear Tetrahedral Symmetry: Possibly Present Throughout the Periodic Table
More than half a century after the fundamental, spherical shell structure in
nuclei has been established, theoretical predictions indicate that the
shell-gaps comparable or even stronger than those at spherical shapes may
exist. Group-theoretical analysis supported by realistic mean-field
calculations indicate that the corresponding nuclei are characterized by the
('double-tetrahedral') group of symmetry, exact or approximate. The
corresponding strong shell-gap structure is markedly enhanced by the existence
of the 4-dimensional irreducible representations of the group in question and
consequently it can be seen as a geometrical effect that does not depend on a
particular realization of the mean-field. Possibilities of discovering the
corresponding symmetry in experiment are discussed.Comment: 4 pages in LaTeX and 4 figures in eps forma
On the validity of the Wigner-Seitz approximation in neutron star crust
The inner crust of neutron stars formed of nuclear clusters immersed in a
neutron sea has been widely studied in the framework of the Wigner-Seitz
approximation since the seminal work of Negele and Vautherin. In this article,
the validity of this approximation is discussed in the framework of the band
theory of solids. For a typical cell of Zr, present in the external
layers of the inner crust, it is shown that the ground state properties of the
neutron gas are rather well reproduced by the Wigner-Seitz approximation, while
its dynamical properties depend on the energy scale of the process of interest
or on the temperature. It is concluded that the Wigner-Seitz approximation is
well suited for describing the inner crust of young neutron stars and the
collapsing core of massive stars during supernovae explosions. However the band
theory is required for low temperature fluid dynamics.Comment: 7 pages, with figures - PTH, version
Quasiperiodic waves at the onset of zero Prandtl number convection with rotation
We show the possibility of quasiperiodic waves at the onset of thermal
convection in a thin horizontal layer of slowly rotating zero-Prandtl number
Boussinesq fluid confined between stress-free conducting boundaries. Two
independent frequencies emerge due to an interaction between a stationary
instability and a self-tuned wavy instability in presence of coriolis force, if
Taylor number is raised above a critical value. Constructing a dynamical system
for the hydrodynamical problem, the competition between the interacting
instabilities is analyzed. The forward bifurcation from the conductive state is
self-tuned.Comment: 9 pages of text (LaTex), 5 figures (Jpeg format
The relation between self-event connections and personality functioning in youth with severe psychopathology
OBJECTIVE: One way in which individuals construct their narrative identity is by making self‐event connections, which are often linked to better functioning. Being unable to make connections is related to identity discontinuity and psychopathology. Work in the general population corroborates this association, but also highlights the importance of focusing on specific aspects of these connections and on vulnerable populations. METHOD: We examined the association of self‐event connections with personality functioning in youth with severe psychopathology (cross‐sectional N = 228, M (age) = 19.5, longitudinal N = 84), and the role of event and connection valence in the subsample of youth who made a connection (n = 188 and n = 68). Negative affectivity was controlled for in all models. RESULTS: We found no evidence that self‐event connections, nor connection valence and its interaction with event valence, are related to functioning. Positive event valence was associated with better functioning. Higher negative affectivity was strongly linked to lower functioning and explained the relation between event valence and functioning. No longitudinal associations emerged. CONCLUSIONS: These findings show that for youth with severe psychopathology making self‐event connections may not be associated with better functioning. Moreover, negative affectivity may be a distal predictor of both event valence and functioning
Reduced neural selectivity for mental states in deaf children with delayed exposure to sign language
Early linguistic experience directly facilitates social development in childhood. Here, the authors reveal that children with delayed access to language show delayed development of selective responses in cortical regions involved in thinking about others’ thoughts
Massively parallel kinetic Monte Carlo simulations of charge carrier transport in organic semiconductors
AbstractA parallel, lattice based Kinetic Monte Carlo simulation is developed that runs on a GPGPU board and includes Coulomb like particle–particle interactions. The performance of this computationally expensive problem is improved by modifying the interaction potential due to nearby particle moves, instead of fully recalculating it. This modification is achieved by adding dipole correction terms that represent the particle move. Exact evaluation of these terms is guaranteed by representing all interactions as 32-bit floating numbers, where only the integers between −222 and 222 are used. We validate our method by modelling the charge transport in disordered organic semiconductors, including Coulomb interactions between charges. Performance is mainly governed by the particle density in the simulation volume, and improves for increasing densities. Our method allows calculations on large volumes including particle–particle interactions, which is important in the field of organic semiconductors
Charge carrier thermalization in organic diodes
Charge carrier mobilities of organic semiconductors are often characterized using steady-state measurements of space charge limited diodes. These measurements assume that charge carriers are in a steady-state equilibrium. In reality, however, energetically hot carriers are introduces by photo-excitation and injection into highly energetic sites from the electrodes. These carriers perturb the equilibrium density of occupied states, and therefore change the overall charge transport properties. In this paper, we look into the effect of energetically hot carriers on the charge transport in organic semiconductors using steady state kinetic Monte Carlo simulations. For injected hot carriers in a typical organic semiconductor, rapid energetic relaxation occurs in the order of tens of nanoseconds, which is much faster than the typical transit time of a charge carrier throught the device. Furthermore, we investigate the impact of photo-generated carriers on the steady-state mobility. For a typical organic voltaic material, an increase in mobility of a factor of 1.1 is found. Therefore, we conclude that the impact of energetically hot carriers on normal device operation is limited
- …