53,751 research outputs found
A study and experiment plan for digital mobile communication via satellite
The viability of mobile communications is examined within the context of a frequency division multiple access, single channel per carrier satellite system emphasizing digital techniques to serve a large population of users. The intent is to provide the mobile users with a grade of service consistant with the requirements for remote, rural (perhaps emergency) voice communications, but which approaches toll quality speech. A traffic model is derived on which to base the determination of the required maximum number of satellite channels to provide the anticipated level of service. Various voice digitalization and digital modulation schemes are reviewed along with a general link analysis of the mobile system. Demand assignment multiple access considerations and analysis tradeoffs are presented. Finally, a completed configuration is described
A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720nm
We report Gemini-South GMOS observations of the exoplanet system WASP-29
during primary transit as a test case for differential spectrophotometry. We
use the multi-object spectrograph to observe the target star and a comparison
star simultaneously to produce multiple light curves at varying wavelengths.
The 'white' light curve and fifteen 'spectral' light curves are analysed to
refine the system parameters and produce a transmission spectrum from 515 to
720nm. All light curves exhibit time-correlated noise, which we model using a
variety of techniques. These include a simple noise rescaling, a Gaussian
process model, and a wavelet based method. These methods all produce consistent
results, although with different uncertainties. The precision of the
transmission spectrum is improved by subtracting a common signal from all the
spectral light curves, reaching a typical precision of ~1x10^-4 in transit
depth. The transmission spectrum is free of spectral features, and given the
non-detection of a pressure broadened Na feature, we can rule out the presence
of a Na rich atmosphere free of clouds or hazes, although we cannot rule out a
narrow Na core. This indicates that Na is not present in the atmosphere, and/or
that clouds/hazes play a significant role in the atmosphere and mask the broad
wings of the Na feature, although the former is a more likely explanation given
WASP-29b's equilibrium temperature of ~970 K, at which Na can form various
compounds. We also briefly discuss the use of Gaussian process and wavelet
methods to account for time correlated noise in transit light curves.Comment: 15 pages, 9 figures, 3 tables. Published in MNRAS. Figure 2 corrected
in version
The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features?
We report Gemini-North GMOS observations of the inflated hot Jupiter
HAT-P-32b during two primary transits. We simultaneously observed two
comparison stars and used differential spectro-photometry to produce
multi-wavelength light curves. 'White' light curves and 29 'spectral' light
curves were extracted for each transit and analysed to refine the system
parameters and produce transmission spectra from 520-930nm in ~14nm bins. The
light curves contain time-varying white noise as well as time-correlated noise,
and we used a Gaussian process model to fit this complex noise model. Common
mode corrections derived from the white light curve fits were applied to the
spectral light curves which significantly improved our precision, reaching
typical uncertainties in the transit depth of ~2x10^-4, corresponding to about
half a pressure scale height. The low resolution transmission spectra are
consistent with a featureless model, and we can confidently rule out broad
features larger than about one scale height. The absence of Na/K wings or
prominent TiO/VO features is most easily explained by grey absorption from
clouds in the upper atmosphere, masking the spectral features. However, we
cannot confidently rule out clear atmosphere models with low abundances (~10^-3
solar) of TiO, VO or even metal hydrides masking the Na and K wings. A smaller
scale height or ionisation could also contribute to muted spectral features,
but alone are unable to to account for the absence of features reported here.Comment: 17 pages, 11 figures, 2 tables, accepted for publication in MNRA
The tidal stripping of satellites
We present an improved analytic calculation for the tidal radius of
satellites and test our results against N-body simulations.
The tidal radius in general depends upon four factors: the potential of the
host galaxy, the potential of the satellite, the orbit of the satellite and
{\it the orbit of the star within the satellite}. We demonstrate that this last
point is critical and suggest using {\it three tidal radii} to cover the range
of orbits of stars within the satellite. In this way we show explicitly that
prograde star orbits will be more easily stripped than radial orbits; while
radial orbits are more easily stripped than retrograde ones. This result has
previously been established by several authors numerically, but can now be
understood analytically. For point mass, power-law (which includes the
isothermal sphere), and a restricted class of split power law potentials our
solution is fully analytic. For more general potentials, we provide an equation
which may be rapidly solved numerically. Over short times (\simlt 1-2 Gyrs
satellite orbit), we find excellent agreement between our analytic and
numerical models. Over longer times, star orbits within the satellite are
transformed by the tidal field of the host galaxy. In a Hubble time, this
causes a convergence of the three limiting tidal radii towards the prograde
stripping radius. Beyond the prograde stripping radius, the velocity dispersion
will be tangentially anisotropic.Comment: 10 pages, 5 figures. Final version accepted for publication in MNRAS.
Some new fully analytic tidal radii have been added for power law density
profiles (including the isothermal sphere) and some split power law
The mass of dwarf spheroidal galaxies and the missing satellite problem
We present the results from a suite of N-body simulations of the tidal
stripping of two-component dwarf galaxies comprising some stars and dark
matter. We show that recent kinematic data from the local group dwarf
spheroidal (dSph) galaxies suggests that dSph galaxies must be sufficiently
massive (M) that tidal stripping is of little
importance for the stars. We discuss the implications of these massive dSph
galaxies for cosmology and galaxy formation.Comment: 4 pages, 1 figure, to appear in the proceedings of the IAUC198
"Near-Field Cosmology with Dwarf Elliptical Galaxies", H. Jerjen & B.
Binggeli (eds.). Comments welcom
Monolithic Arrays of Grating-Surface-Emitting Diode Lasers and Quantum Well Modulators for Optical Communications
The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator
Factorised Steady States in Mass Transport Models
We study a class of mass transport models where mass is transported in a
preferred direction around a one-dimensional periodic lattice and is globally
conserved. The model encompasses both discrete and continuous masses and
parallel and random sequential dynamics and includes models such as the
Zero-range process and Asymmetric random average process as special cases. We
derive a necessary and sufficient condition for the steady state to factorise,
which takes a rather simple form.Comment: 6 page
Superintegrability on N-dimensional spaces of constant curvature from so(N+1) and its contractions
The Lie-Poisson algebra so(N+1) and some of its contractions are used to
construct a family of superintegrable Hamiltonians on the ND spherical,
Euclidean, hyperbolic, Minkowskian and (anti-)de Sitter spaces. We firstly
present a Hamiltonian which is a superposition of an arbitrary central
potential with N arbitrary centrifugal terms. Such a system is quasi-maximally
superintegrable since this is endowed with 2N-3 functionally independent
constants of the motion (plus the Hamiltonian). Secondly, we identify two
maximally superintegrable Hamiltonians by choosing a specific central potential
and finding at the same time the remaining integral. The former is the
generalization of the Smorodinsky-Winternitz system to the above six spaces,
while the latter is a generalization of the Kepler-Coulomb potential, for which
the Laplace-Runge-Lenz N-vector is also given. All the systems and constants of
the motion are explicitly expressed in a unified form in terms of ambient and
polar coordinates as they are parametrized by two contraction parameters
(curvature and signature of the metric).Comment: 14 pages. Based on the contribution presented at the "XII
International Conference on Symmetry Methods in Physics", Yerevan (Armenia),
July 2006. To appear in Physics of Atomic Nucle
Fractionation of polydisperse systems: multi-phase coexistence
The width of the distribution of species in a polydisperse system is employed
in a small-variable expansion, to obtain a well-controlled and compact scheme
by which to calculate phase equilibria in multi-phase systems. General and
universal relations are derived, which determine the partitioning of the fluid
components among the phases. The analysis applies to mixtures of arbitrarily
many slightly-polydisperse components. An explicit solution is approximated for
hard spheres.Comment: 4 pages, 1 figur
- âŠ