6,000 research outputs found

    Turbulent thermal diffusion of aerosols in geophysics and laboratory experiments

    Get PDF
    We discuss a new phenomenon of turbulent thermal diffusion associated with turbulent transport of aerosols in the atmosphere and in laboratory experiments. The essence of this phenomenon is the appearance of a nondiffusive mean flux of particles in the direction of the mean heat flux, which results in the formation of large-scale inhomogeneities in the spatial distribution of aerosols that accumulate in regions of minimum mean temperature of the surrounding fluid. This effect of turbulent thermal diffusion was detected experimentally. In experiments turbulence was generated by two oscillating grids in two directions of the imposed vertical mean temperature gradient. We used Particle Image Velocimetry to determine the turbulent velocity field, and an Image Processing Technique based on an analysis of the intensity of Mie scattering to determine the spatial distribution of aerosols. Analysis of the intensity of laser light Mie scattering by aerosols showed that aerosols accumulate in the vicinity of the minimum mean temperature due to the effect of turbulent thermal diffusion. Geophysical applications of the obtained results are discussed.Comment: 9 pages, 6 figures, revtex

    Thermodynamics of a d-wave Superconductor Near a Surface

    Full text link
    We study the properties of an anisotropically paired superconductor in the presence of a specularly reflecting surface. The bulk stable phase of the superconducting order parameter is taken to have dx2y2d_{x^2-y^2} symmetry. Contributions by order parameter components of different symmetries vanish in the bulk, but may enter in the vicinity of a wall. We calculate the self-consistent order parameter and surface free energy within the quasiclassical formulation of superconductivity. We discuss, in particular, the dependence of these quantities on the degree of order parameter mixing and the surface to lattice orientation. Knowledge of the thermodynamically stable order parameter near a surface is a necessary precondition for calculating measurable surface properties which we present in a companion paper.Comment: 12 pages of revtex text with 12 compressed and encoded figures. To appear in J. Low Temp. Phys., December, 199

    't Hooft Expansion of 1/2 BPS Wilson Loop

    Get PDF
    We revisit the 't Hooft expansion of 1/2 BPS circular Wilson loop in N=4 SYM studied by Drukker and Gross in hep-th/0010274. We find an interesting recursion relation which relates different number of holes on the worldsheet. We also argue that we can turn on the string coupling by applying a certain integral transformation to the planar result.Comment: 21 pages; v2: minor correction

    New Concepts in Particle Physics from Solution of an Old Problem

    Full text link
    Recent ideas on modular localization in local quantum physics are used to clarify the relation between on- and off-shell quantities in particle physics; in particular the relation between on-shell crossing symmetry and off-shell Einstein causality. Among the collateral results of this new nonperturbative approach are profound relations between crossing symmetry of particle physics and Hawking-Unruh like thermal aspects (KMS property, entropy attached to horizons) of quantum matter behind causal horizons, aspects which hitherto were exclusively related with Killing horizons in curved spacetime rather than with localization aspects in Minkowski space particle physics. The scope of this modular framework is amazingly wide and ranges from providing a conceptual basis for the d=1+1 bootstrap-formfactor program for factorizable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert space (in d=1+1 a holographic relation and in higher dimensions more like a scanning). The new framework gives a spacetime interpretation to the Zamolodchikov-Faddeev algebra and explains its thermal aspects.Comment: In this form it will appear in JPA Math Gen, 47 pages tcilate

    Not Just Thinking, but Believing: Obsessive Beliefs and Domains of Cognitive Fusion in the Prediction of OCD Symptom Dimensions

    Get PDF
    Cognitive fusion (CF), involves the tendency to “buy in” to thoughts and feelings and consists of three empirically established domains: somatic concerns, emotion regulation, and negative evaluation. CF is hypothesized to play a role in obsessive-compulsive disorder (OCD). The present study examined how well the CF domains, relative to traditional cognitive-behavioral constructs (i.e., obsessive beliefs such as inflated responsibility), predict OCD symptoms. 52 treatment-seeking adults with OCD completed self-report measures of CF, obsessive beliefs, OCD symptoms, and general distress. Domains of CF were differentially associated with the responsibility for harm, symmetry and unacceptable thoughts OCD dimensions, yet after accounting for obsessive beliefs, only the negative evaluation domain of CF significantly predicted symmetry OCD symptoms. Obsessive beliefs significantly predicted all OCD dimensions except for contamination. These findings provide additional support for existing cognitive-behavioral models of OCD across symptom dimensions, with the exception of contamination symptoms, and suggest that the believability of thoughts and feelings about negative evaluation adds to the explanation of symmetry symptoms. Conceptual and treatment implications, study limitations, and future directions are discussed

    Anyons and the Bose-Fermi duality in the finite-temperature Thirring model

    Full text link
    Solutions to the Thirring model are constructed in the framework of algebraic QFT. It is shown that for all positive temperatures there are fermionic solutions only if the coupling constant is λ=2(2n+1)π,nN\lambda=\sqrt{2(2n+1)\pi}, n\in {\bf N}. These fermions are inequivalent and only for n=1n=1 they are canonical fields. In the general case solutions are anyons. Different anyons (which are uncountably many) live in orthogonal spaces and obey dynamical equations (of the type of Heisenberg's "Urgleichung") characterized by the corresponding values of the statistic parameter. Thus statistic parameter turns out to be related to the coupling constant λ\lambda and the whole Hilbert space becomes non-separable with a different "Urgleichung" satisfied in each of its sectors. This feature certainly cannot be seen by any power expansion in λ\lambda. Moreover, since the latter is tied to the statistic parameter, it is clear that such an expansion is doomed to failure and will never reveal the true structure of the theory. The correlation functions in the temperature state for the canonical dressed fermions are shown by us to coincide with the ones for bare fields, that is in agreement with the uniqueness of the τ\tau-KMS state over the CAR algebra (τ\tau being the shift automorphism). Also the α\alpha-anyon two-point function is evaluated and for scalar field it reproduces the result that is known from the literature.Comment: 25 pages, LaTe

    Electromagnetism in terms of quantum measurements

    Get PDF
    We consider the question whether electromagnetism can be derived from quantum physics of measurements. It turns out that this is possible, both for quantum and classical electromagnetism, if we use more recent innovations such as smearing of observables and simultaneous measurability. In this way we justify the use of von Neumann-type measurement models for physical processes. We apply operational quantum measurement theory to gain insight in fundamental aspects of quantum physics. Interactions of von Neumann type make the Heisenberg evolution of observables describable using explicit operator deformations. In this way one can obtain quantized electromagnetism as a measurement of a system by another. The relevant deformations (Rieffel deformations) have a mathematically well-defined "classical" limit which is indeed classical electromagnetism for our choice of interaction
    corecore