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We consider the question whether electromagnetism can be derived from the theory
of quantum measurements. It turns out that this is possible, both for quantum and
classical electromagnetism, if we use more recent innovations such as smearing
of observables and simultaneous measurability. In this way, we justify the use
of von Neumann-type measurement models for physical processes. We apply the
operational quantum measurement theory to gain insight into fundamental aspects of
quantum physics. Interactions of von Neumann type make the Heisenberg evolution
of observables describable using explicit operator deformations. In this way, one
can obtain quantized electromagnetism as a measurement of a system by another.
The relevant deformations (Rieffel deformations) have a mathematically well-defined
“classical” limit which is indeed classical electromagnetism for our choice of
interaction. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972287]

I. INTRODUCTION

A “quantum measurement,” as described by von Neumann’s model and its generalizations, im-
pacts the system sufficiently to make it necessary to regard it as a disturbance. Only the system plus
apparatus together forms an approximately closed system. In this paper, we will use such models to
describe any interaction between the quantum system, being it what is in common language meant
by a measurement or not.

For this we use the operational quantum measurement theory11 which during the last two de-
cades has provided a systematic generalization of von Neumann’s original formulation of measure-
ments. Just as von Neumann’s model, this is one of the conceptually most important components of
the quantum theory since it gives an operational description of the very interactions themselves. Our
task is to see how this is related to the other parts of the quantum theory where the interactions are
not of tensor product form, as is almost always the case in condensed matter physics (field theory
or not). Then there is hope of understanding a great deal of physical phenomena as emerging from
these single quantum interactions.

In fact, the notion of “sequential measurements,” recalled in Sec. II F, gives a possibility of
comparing the effect of two measurements on each other. The effect of one of the measurements
is completely independent on what causes the second measurement. Hence, if experiments are not
privileged among interactions, it should be possible to obtain physical forces as “measurements”
done by another (uncontrollable) quantum system. If we place the quantum measurement in a
central position in quantum physics then we better try to show that it reproduces what the quan-
tum theory describes so well, viz. electromagnetic interactions. We will show that this is possible,
but we do not think it would be possible without these recent extensions of the von Neumann
model. Having this in mind it is maybe understandable that the latter has often been regarded as
artificial. This is nevertheless false; for example, the interaction term in the nonrelativistic quantum
electrodynamics Hamiltonian of an atom interacting with the electromagnetic field takes the same
(tensor-product) form as that in the von Neumann model by invoking the dipole approximation
only Ref. 1, Sec. IV B. Thus, simple as it might be, this model is really the starting point and with
the mentioned addenda it will provide the most direct derivation of electromagnetism.
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However, the main objects in the operational measurement theory are not the observables
which appear, e.g., in the quantum field theory. To deal with the same formalism using the conven-
tional observables requires manipulations with unbounded operators. The required technicalities
for doing so are taken care of by the identification3 of the measurement disturbance as a defor-
mation which can be made mathematically rigorous and relates directly to generators of symmetry
transformations and the conventional observables.

Deformations related to spacetime symmetries and observables have been studied a lot, albeit
not as deformations due to quantum interactions. Recently there has been a lot of interest in
applying noncommutative geometry to physics, for example, due to the idea that the spacetime
itself might be noncommutative, i.e., the idea that the spacetime coordinates x0, x1, x2, x3 do not
commute.4 While the main motivation for this (related to quantum gravity) has little relevance
for what we will discuss here, it has become much clearer in what way noncommutativities in
addition to the standard Heisenberg relation relate to physical effects. Most directly, descriptions
of many phenomena in condensed matter physics can be obtained from the case of free particles
by, instead of adding interactions by hand to the Hamiltonian or Lagrangian, introducing some
nonstandard commutation relations between momenta and/or coordinates (see, e.g., Refs. 5 and
16). Again, this is interesting since the noncommutativity of quantum mechanics has often been
linked to a disturbance induced by the measurement. What is then the relation between these other
noncommutativities, which reproduce forces, and quantum measurements? Since the latter simply
describes interactions with small systems of matter, there should exist some relation. In this paper,
we show that the above noncommutative models can be understood from the theory of quantum
measurements initiated by von Neumann.

An interaction between two quantum systems is typically modeled using a unitary operator
W = e−iXµ⊗Y µ

acting on the composite Hilbert space H ⊗ K of the two systems. Here X =
(X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) are conventional observables, i.e., unbounded selfadjoint operators
on H and K , respectively. If T is an observable on H then W−1(T ⊗ 1)W is the corresponding
observable after the measurement, before “tracing out” the auxiliary space K using some state. In
Sec. II D, we recall a result relating this observables to a certain operator deformation introduced
quite recently in the context of an algebraic quantum field theory9,8 to incorporate noncommutative
effects in physical models. In Ref. 3, it was also shown that the formula

W−1(T ⊗ 1)W =

Rn

eiy
µXµTe−iy

µXµ ⊗ dEY(y)
holds even in the case when T is unbounded but satisfies some weak requirements. In particular,
it includes the case when A is a momentum or coordinate operator, or a polynomial of these
(equivalently, a polynomial in annihilation and creation operators).

After recalling this result, we devote Secs. II E and II F to see what the formalism looks
like in the language of the operational quantum measurement theory. These notions set the stage
for Sec. III where we discuss the origin of quantum discreteness. We take the viewpoint that the
interaction of a quantum system with, e.g., a magnetic field can be described by the same quantum
measurement theory as a controlled interaction, and we then compare the strength of this interaction
to that of an interaction due to an experimental measurement on the system. Since the magnetic
field interacts via so much faster (smaller) energy transfers, its presence requires the experimentalist
to describe his measurement as a “joint measurement,” a fact which affects the algebra of observ-
ables in a significant way. Namely, it forces the minimal substitution P → P − A of the momentum
observables P. Furthermore, this substitution is obtained as a measurement of the coordinate oper-
ators X of the system. Viewing these as symmetry generators, one gets the intuitive picture that
the coupling to the gauge field A is equivalent to having the system in constant acceleration, the
coordinate operators being up to a constant, the generators of boosts in nonrelativistic quantum
mechanics. This gives an interpretation of the recent observation made in Ref. 32 that the minimal
coupling can be rigorously obtained as a deformation.

Working in an equilibrium representation of the observable algebra21, one can obtain a potential
energy Hamiltonian in the same fashion as the minimal substitution mentioned above, i.e., from
a quantum measurement interaction. This requires avoiding the Pauli theorem saying that there
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can be no selfadjoint operator corresponding to time.34 Fortunately, in the algebraic formulation of
equilibrium, this no-go result does not apply and we can define a generator of energy translations
completely analogous to those of momentum translations. When we conclude Sec. IV, we have
obtained the electromagnetic force strength F = (Fµν) as the deformation matrix Θ in the above
warped convolution formula; equivalently, electromagnetism is recovered from quantum interac-
tions with W = e−iFµνX

µ⊗Xν
.

While there exists an abundance of literature on “quantization,” i.e., the concept of either recov-
ering the classical limit ~ → 0 or to obtain quantum observable algebras starting from the algebra
of functions on the phase space27 (the former is what makes sense physically), there has been much
less effort devoted to relating such a quantization to electromagnetism. Our final aim (Sec. V) is to
discuss the classical limit of quantum-measurement interactions. The warped convolution is closely
related to the Rieffel deformation, which in turn was motivated by quantization. In particular,
there is a well-defined “classical limit,” where the deformation parameter (in our case the coupling
strength) goes to zero. In light of the physical meaning given to these constructions in this paper,
we can make some interesting observations: it follows from Rieffel’s deformation quantization that,
in the classical limit, the components of the interaction matrix Fµν become the structure constants
of a Poisson bracket on the classical algebra of smooth functions of momentum. Then we know
that Maxwell’s equations of classical electromagnetism emerge quite directly, since such a Poisson
bracket has been discussed in relation to Feynman’s derivation of electromagnetism.6

II. PRELIMINARIES

A. Motivating the von Neumann model

Suppose that we have two quantum systems, modeled by Hilbert spacesH andK , respectively
(we speak of H as the “quantum system” itself to facilitate notation). Suppose that H and K
initially do not interact. It is then natural to model the composite system as H ⊗ K , since then an
operator onH cannot influence the properties onK , and vice versa, and the spectrum of an operator
of the form X ⊗ Y is just the Cartesian product of the spectra of X and Y .

Next suppose that there is an interaction between them. If we ignore any other interactions then
the total time evolution onH ⊗ K should be unitary. The simplest choice is to take a unitary of the
form W = e−iXµ⊗Y µ

since then the (necessarily selfadjoint) operators X1, . . . ,Xn and Y1, . . . ,Xn can
easily be given physical interpretations as being associated with physical properties of H and K ,
respectively (which is what we want when modeling an interaction between two quantum systems;
otherwise we could, for most purposes, just considerH ⊗ K as a unit system from the beginning).

Definition 2.1. We refer to an interaction of the form (H ,K ,W = e−iXµ⊗Y µ) as a von Neumann-
model interaction.

We do not make any distinction as to whether the interaction is controlled by a conscient,
since that would be a very strong (non-Copernican) assumption and we are trying to minimalize the
number of assumptions.

As mentioned in the Introduction, an interaction of the form X ⊗ P, with X and P the coor-
dinate and momentum operator, appears in the Hamiltonian of nonrelativistic quantum electrody-
namics in the dipole approximation and, as a result, is used in almost all applications of open quan-
tum systems, to, e.g., spectroscopy and other nonequilibrium processes. The interaction is usually
taken to be a sum of terms (ak + a†

k
) ⊗ (ck + c†

k
), and both for Fermionic and Bosonic annihilation

operators ak and ck, we have the interpretation of this interaction as being of the form X ⊗ P. This
interpretation is again lost after making the rotating-wave approximation.

B. Quantum measurement theory

The foundations of quantum measurements were laid by von Neumann when he introduced his
measurement model.40 Generalizations in various directions have been obtained, e.g., to operators



122104-4 Andreas Andersson J. Math. Phys. 57, 122104 (2016)

with continuous spectra as done by Ozawa.36 During the last two decades, the theory of quantum
measurements has been developed more systematically in the language of operational quantum
theory.11 In this formalism, “observables” are positive operator-valued measures (POVMs).

Definition 2.2. Let Ω be a nonempty set and let F be a σ-algebra of subsets of Ω. A countably
additive mapping E : F → B(H ) is called a POVM or semispectral measure if 0 ≤ E(∆) ≤ 1 for
all ∆ ∈ F (i.e., each E(∆) is an effect) and E(Ω) = 1.

Definition 2.3. A POVM E : F → B(H ) is called a projection-valued measure (PVM) or
spectral measure if in addition E(∆)2 = E(∆) for all ∆ ∈ F or (equivalently) E(∆)E(∆′) = 0 when-
ever ∆ ∩ ∆′ = ∅.

Thus if we regard the spectral measure EX of a selfadjoint operator X as the observable then
the POVMs are “generalized observables.” There are very good reasons to argue that POVMs are
needed in addition to the PVMs in order to use the quantum theory in full power,11 many of which
will be very explicit in this paper. Nevertheless, an important effect of the tools we use below
(deformations using selfadjoint operators as generators) is that the conventional observables (e.g.,
multiplication and differentiation operators) can be more directly involved also in this more gen-
eral formulation of measurements. We shall use the term “observable” to refer to both selfadjoint
operators and POVMs. PVM observables are sometimes also called sharp while POVMs are called
unsharp.

LetM ⊆ B(H ) be a von Neumann algebra.

Definition 2.4. A measurement of an observable E : F → M is a quintuple (K , Z,ωK ,W, f )
where K � H is the separable Hilbert space, Z is a selfadjoint operator on K , ωK is a normal
state on B(K ), W is a unitary operator on H ⊗ K (the time evolution), and f : Spec(Z) → Ω is a
measurable function (into some spaceΩ) called the pointer function. It is required that

ω[E(∆)] = (ω ⊗ ωK )[W−1(1 ⊗ EZ( f −1(∆))W )] (2.1)

for all ω ∈ M∗ and ∆ ∈ F .

The meaning of Definition 2.4 is that the elements of M evolve under the measurement ac-
cording to A → W−1(A ⊗ 1)W , and similarly for those of B(K ), and that 1 ⊗ Z takes the same
values in the final total state as E does in the initial state. Usually one takes f to be the identity
function but we shall find in Sec. III that we need a nontrivial f . With such a measurement scheme
(K , Z,ωK ,W, f ), the condition (2.1) will be called the probability reproducibility condition.
When E is a PVM, this condition cannot hold if E has a continuous spectrum. Hence the measured
observable is either discrete or unsharp (or both) (Ref. 11, p. 119).

C. Operator deformations

As a tool for constructing quantum field theories, e.g., for incorporating noncommutative ef-
fects of spacetime, Buchholz, Lechner, and Summers8,9 introduced a way of deforming an operator
T on the Hilbert space H to what they called a “warped convolution” of the operator.8,9 The idea
is as follows. For some positive integer n, consider an n-tuple of commuting selfadjoint operators
P = (Pµ) = (P0,P1, . . . ,Pn−1) in H ; we take as an example the relativistic momentum operator, so
n = 4. It generates a 4-parameter unitary representation x → U(x) of spacetime translations in the
Hilbert space defined by the physical state. There is thus an action

αx(T) = U(x)−1TU(x) B ei x ·PTe−i x ·P

of R4 on B(H ). For a bounded operator T which is smooth with respect to this action, the warped
convolution of T can be defined and equals

TΘ B

R4
αΘx(T) dEP(x), (2.2)
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where dEP(x) is the joint spectral measure of Pµ’s and Θ is a 4 × 4 skew-symmetric matrix. In
fact, (2.2) makes sense also for certain unbounded operators,32 a fact that we shall need. We shall
only deform selfadjoint operators, and they will always be such that their deformations are again
selfadjoint, by Ref. 33.

The warped convolution turns out to be related to the deformed products developed by Rief-
fel.8,28 This is also very interesting since these products are used in the quantization theory (as will
be described and used in Sec. V).

The formula (2.2) has interesting applications in physics, for example, when the generators
are the momenta Pµ but other commuting generators can also be important.31 Some familiar
quantum-mechanical effects were reproduced in Ref. 32 by deforming some initial free operators
into the desired ones. These results are very fascinating, in particular the fact that, it turns out,
the deformation with the coordinate operators X µ conjugate to Pµ’s actually reproduces minimal
coupling to a gauge field when the matrix Θ in (2.2) is chosen properly, at least in the nonrelativistic
setting (see Sec. III). The above deformation (2.2) somehow provides a path from symmetries to
forces using only the commutation relations of the symmetry group. Can we also understand why
this is true?

Of concern is also the unitarity of the transformation T → TΘ. More precisely, it is not true in
general that there is a unitary operator V ∈ B(H ) such that an operator T on H can be mapped to
TΘ by T → V−1TV . But it is known that there are situations when introducing noncommutativity
by means of replacing T by TΘ can account for the difference between a system without and in the
presence of an external force field.32 The noncommutativity should, as in the case of the Heisenberg
relation, come from the interaction between two or more quantum systems. Thus, in addition to the
observable algebra of the system, the other player in this interaction (which is not seen in the above
description) must be included in order to obtain this unitarity.

D. Deformations from quantum measurements

Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be arbitrary commuting selfadjoint operators in Hil-
bert spaces H and K , respectively. We use the summation notation Xµ ⊗ Y µ B

n
k=1 Xk ⊗ Yk. We

refer to Ref. 3 for the technical details of the following.

Theorem 2.5. Let T be an operator acting on H satisfying certain conditions (for example,
T can be any polynomial in the coordinate or momentum operators). Then on a certain dense
subspace of H ⊗ K , we have (in the weak sense) the equalities

eiXµ⊗Y µ(T ⊗ 1)e−iXµ⊗Y µ
=


Rn

eiy
µXµTe−iy

µXµ ⊗ dEY(y),

where Rn ∋→ y → dEY(y) is the joint spectral measure of Y .

Note that if K is just another copy of H and Y just another copy of X then the right-hand side
of the above formula looks exactly like the warped convolution (2.2) except for the tensor product
factor.

Thus, if we consider the case when W B e−iXµ⊗X µ
plays the role of a measurement time

evolution, the post-measurement observable W ∗(T ⊗ 1)W in H ⊗ K obtained from T ⊗ 1 is like a
warped convolution using X µ’s as generators. There is a nontrivial distinction because of the tensor
product that will be discussed in detail in Sec. III. The important point is that when K is ignored,
the warped convolution is a good way of modeling the deformation due to an interaction. This
becomes interesting when one considers some C∗-algebra of operators A because one then has the
relation to the Rieffel deformation. This will be essential for obtaining classical electromagnetism
from quantum measurements.

If W is viewed as a measurement then the commuting operators X1, . . . , Xn are the ones
intended to be measured on the quantum system. These are usually not the same as the “measured
observables,” as we recall next.



122104-6 Andreas Andersson J. Math. Phys. 57, 122104 (2016)

E. Instruments

Let T be an operator onH . So far we have discussed the element W−1(T ⊗ 1)W corresponding
to T after an interaction W = exp(−iX ⊗ Y ) with some other system B(K ). But T ⊗ 1 is an operator
on the composite system H ⊗ K . The evolution of T is obtained after choosing an initial state
ωK on B(K ) and evaluating W−1(T ⊗ 1)W in 1 ⊗ ωK . This last step is similar to the partial trace
operation on states.

If ωK ∈ B(K )∗ is the initial state on K then the time evolution of an element T ∈ B(H ) is
given by

T →

R

eiyXTe−iyXωK [dEY(y)].
Now it may be that the outcome of the measurement is recorded by measuring the pointer observ-
able EZ “conjugate” to EY , i.e., [Y, Z] = i1. In that case, the evolution of A can be made more
precise; it is zoomed in using the outcome of the measurement. For this we use the notion of
“instruments.”15 Namely, for all Borel subsets ∆ of R, we have the map

E∗∆ : B(H ) → B(H ), T → (id ⊗ ωK )[W−1(T ⊗ EZ( f −1(∆)))W ],
which defines the dual E∗ : ∆ → E∗

∆
of the instrument of the interaction described by X ⊗ Y (here

f : Spec(Z) → Spec(X) is a function relating the spectra as in Definition 2.4).

Remark 2.6. In terms of the completely positive map E∗
∆
, the probability reproducibility condi-

tion (2.1) takes the form

ω[E∗∆(1)] = ω[E(∆)], ∀ω ∈ M∗,∆ ∈ F .

The instrument ∆ → (E∆ : B(H )∗ → B(H )∗) is then defined via

(E∆(ρ))(T) = ρ(E∗∆(T)), T ∈ B(H ).
Thus, the map E∆ on states corresponds to the Schrödinger picture while the map E∗

∆
on observables

corresponds to the Heisenberg picture. For our purposes, however, the most important use of the
instrument is that it can show us how the statistics of the measured observable are generally not the
same as one might have guessed.

Definition 2.7. Let E : B(H )∗ → B(H )∗ be an instrument. The measured observable EE

associated with E is defined by

EE(∆) B E∗∆(1).

Remark 2.8. For a given instrument E, the measured observable EE is unique. On the other
hand, there are many instruments which define the same observable EE.

Since we have obtained an explicit formula for the deformed observables, the observable
associated with E can be calculated explicitly.3

Corollary 2.9. Let (K , Z,ωK ,e−iκX ⊗Y , f ) be a measurement of a sharp observable X as in
Definition 2.4 and assume that [Y, Z] = i1. Then the measured observable is given by

EEκ (∆) =

R

ωK [dEZ( f −1(∆ − κx))] dEX(x). (2.3)

Therefore, unless ωK [dEZ( f −1(∆ − κx))] = χ∆ for all x ∈ Spec(X), the measured observable
will not be equal to the one “intended” to be measured, i.e., the spectral measure EX of the operator
X appearing in e−iκX ⊗Y . When we have [Y, Z] = i1, this can only happen if κ = 0. On the other
hand, if [Y, Z] = 0 then E∗

∆
(1) = ωK [EZ( f −1(∆))]1 for all ∆ so that only a multiple of the identity

can be measured (which is usually far from EX!). This manifests the trade-off between accuracy and
disturbance. We will see an example in Sec. III where it is important which observable is actually
measured.
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F. Sequential measurements

The above formalism can be used to describe a subsequent measurement of a second observ-
able, something which is nontrivial because of the disturbance caused by the first interaction. For
example, after having measured position, it would be interesting to see how this affects a measure-
ment of the momentum, since by the commutation relations the momentum is deformed by the
position measurement. Again the notion of the instrument is well adapted for this task.

Let E1 and E2 be two POVMs onH associated with instruments E1 and E2, respectively, so that
for every trace-class operator ρ on B(H ) and Borel set ∆ ⊂ R we have

Tr{ρE1(∆)} = Tr{E1
∆(ρ)}, Tr{ρE2(∆)} = Tr{E2

∆(ρ)}.
If E1 is measured with outcome in ∆1 followed by E2 in ∆2 then the instrument E2 ◦ E1 of the
composite measurement takes the value E2

∆2
◦ E1
∆1

. There is a unique observable F associated with
this element, given by Ref. 13,

F(∆1 × ∆2) B (E1
∆1
)∗[E2(∆2)].

Of relevance are the so-called marginals given by

F1(∆1) B F(∆1 × R) = (E1
∆1
)∗[E2(R)] = E1(∆1),

F2(∆2) B F(R × ∆2) = (E1
R)∗[E2(∆2)] ≡ E ′2(∆2),

so that the second marginal is not E2 but a deformed version E ′2. The case when E2 = E ′2 means
that each effect E2(∆2) of E2 is a fixed point of (E1

R)∗. In Ref. 24, this scenario is summarized by
saying that E1 can be measured “without disturbing” E2. For the kind of observables we consider
here, i.e., the spectral measures of selfadjoint operators, E1 does not disturb E2 if and only if
[E1(∆),E2(∆)] = 0 for all ∆ ⊂ R. This is just another way of seeing that if M is the observable
algebra of interest which we deform by generators of a maximal abelian subalgebra A ⊂ M, then
the deformation of B ∈ M is nontrivial precisely when B < A. This is easy to see in terms of
projections, sinceA is generated by its projections.

Definition 2.10. Let F1 and F2 be POVMs on (Ω1,F1) and (Ω2,F2), respectively, with values
in B(H ). We say that F1 and F2 are simultaneously measurable if there exists a POVM F on
(Ω1 ×Ω2,F1 × F2) with marginals F1,F2.

III. MINIMAL COUPLING TO GAUGE FIELD

Starting with the free Hamiltonian of a charged mass-m particle in three dimensions,

H0 B
p2

2m
,

the presence of a magnetic field requires changing the momentum p to p + qA,

Hq B
(p + qA)2

2m
, (3.1)

where q is the charge and A is the electromagnetic vector potential.26 In the quantum field theory
language, the field creating the given particle species has been “minimally coupled” to the gauge
field A.

From now on, Hq will denote the canonically quantized version of (3.1), so p is replaced by a
triple P = (P1,P2,P3) of operators on a Hilbert space H in which also acts a triple X = (X1,X2,X3)
of operators such that [Pj,Xk] = i.

It turns out that Hq can be obtained from H0 by a certain (nonrelativistic) “boosting” of the
system. Namely, consider a skew-symmetric 3 × 3 matrix Θ of the form

Θ
jk = ϵ i jkBi (3.2)

for some vector B = (B1,B2,B3).
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Theorem 3.1 (Ref. 32 [Lemma 4.1]). Define the real skewsymmetric 3 × 3 matrix Θ by Equa-
tion (3.2) and define an action of R3 on operators A inH by

αp(A) B e−ip·XAeip·X, ∀p ∈ R3. (3.3)

Then the momentum operator deforms as in (2.2) into

PqΘ = P + qA, (3.4)

where A B ϵ j,k,lBkXl.

Recall that the coordinate operators are up to a constant the generators of boosts in nonrelativ-
istic mechanics. Thus (3.4) says that applying a boost to the system, via the action (3.3), results in
the minimal substitution (3.1) on the quantum level.

Here we shall try to elucidate the meaning of this peculiarity. The idea is that, in view of The-
orem 2.5, it seems plausible that we can accomplish such a deformation as a (Heisenberg-picture)
unitary evolution by enlarging the Hilbert space.

So letH be the Hilbert space of the free (spinless) particle, so that the most natural way to view
H is as L2(R3). The state space of the magnetic field is taken to be K = L2(R3) as well. We start
with the von Neumann interaction

Wq = e−iqϵ
i jkBiX j⊗Xk, (3.5)

where X j’s are the components of the coordinate operator X = (X1,X2,X3) and the Einstein summa-
tion is implicit for j, k = 1,2,3. This interaction looks a little bit unfamiliar in the context of
measurements since we take X on both factors. We could equivalently have taken X ⊗ P but the
particle-field interaction is more symmetric in the above notation. The coupling matrix Θ will be
identified with the magnetic field and the magnetic two-form acts on tangent vectors, hence the
position operators on both factors.

In terms of the choice of “vector potential” A given by Ak B Θ jkX j (recall B = ∇ × A), the
interaction unitary (3.5) is

Wq = e−iqX⊗A B e−iqX1⊗A1e−iqX2⊗A2e−iqX3⊗A3.

To motivate the choice (3.5), we assume that electromagnetic interactions results from the
mutual exchange in energy between the magnetic field and the particle. The system described by K
consists of particles in states very similar to that of the single particle in the plane described by H
(or else there could be no interaction); they are treated on an equal footing as is seen explicitly from
the symmetry in the interaction operator (3.5).

Lemma 3.2. With Wq given by (3.5) and Θ jkX j = Ak for A = (A1, A2, A3),
W−1

q (P ⊗ 1)Wq = P ⊗ 1 + 1 ⊗ qA.

Proof. Straightforward in view of Theorem 2.5. �

Thus, for the quantum system H of a free particle in R3, a measurement of the coordinate
operator X onH using Wq gives the minimal substitution.

Lemma 3.2 is an open-system analogue to the equality (3.4) obtained in Ref. 32 without includ-
ing the part K in the description. The operator A does not act on the same Hilbert space as P in
the tensor product picture, in accordance with how the field-particle-interaction is usually treated
in spin-boson-type models. On the other hand, in some condensed matter models, it is crucial
that these operators actually do fail to commute. Namely, the operator (P + qA)2/2m has discrete
spectrum as a consequence of A acting on the same Hilbert space and not commuting with P. This
is well-known to be the physically correct result in some cases: an electron moving in a plane
with a perpendicular magnetic field can only adopt a discrete set energy states. However, the free
Hamiltonian H0 = P2/2m has a continuous spectrum and since a unitary transformation preserves
the spectrum it is clear that the same is true for W−1

q (H0 ⊗ 1)Wq given in Lemma 3.2.
So, while the same term qA appears quite satisfactorily by viewing the field as a second quan-

tum system, it seems as if the tensor product structure prevents a proper mathematical framework
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for describing all physical effects. The way in which the vector potential is dealt with as an operator
is not universal as to if it acts on the same Hilbert space as the particle operators or not. When
there is a third interacting component (e.g., experimentalist), the gauge potential and the particle
operators are assumed to act on the same Hilbert space and one achieves discretization in energy.
When the experimentalist controls the field interaction (e.g., as in quantum optics), there should be
no noncommutativity and a tensor product is used. Or, e.g., as for the Hamiltonian of nonrelativistic
quantum electrodynamics, the vector potential acts on both spaces but [P,A] = 0 because of the
representation of P as a differential operator and the Coulomb gauge ∇ · A = 0.

Using a general open-system approach only there seems to be some arbitrariness in the choice
between commutativity and noncommutativity of P and A when more that two systems interact.
The tensor product remains unless removed by hand or disregarded from the beginning. Still, we
shall see that the expected discreteness appears from quantum measurements anyway, i.e., that the
qualitative picture is always correct.

A. Discreteness

Now that we have obtained such a nice picture of the field interaction in terms of energy
transfer, one may ask if it is possible to get an intuitive picture also for the cause of the discretization
of energy levels that occur in some condensed matter systems of particles in constant magnetic
fields. The presence of such energy transfers (magnetic field) somehow affects the way in which
another system interacting with the particle can abstract or donate energy to the particle. We shall
discuss this using some aspects of the sequential measurements mentioned in Sec. II F.

For ease of notation, define the map

B̃ : R3 → R3, B̃y B B ∧ y,

where B ∧ y is viewed as a function of tangent vectors x ∈ R3 so that the scalar product B̃y · x
is the dual pairing between cotangent and tangent vectors. In this notion, the above coupling is
W = e−i B̃X⊗X. For the measurement with W , we note that the pointer function from Definition 2.4 is
given by f = B̃−1.

Let us again view the apparatus Hilbert space as K = L2(R3) and the total Hilbert space as
H ⊗ K = L2(R3) ⊗ L2(R3). We spectrally decompose X ⊗ 1 and 1 ⊗ X as

X ⊗ 1 =

R3

x dEX⊗1(x), 1 ⊗ X =

R3

x dE1⊗X(x).

In what follows, we apply constructions summarized in Ref. 10. Suppose that the initial state of
the magnetic field is a vector state ωψ (the below formulae can easily be adjusted to general initial
states). We view ψ as a function on momentum space (R3)∗ = R3 and we assume for later purposes
that ψ is continuous and has a compact support. The dual E∗

∆
of the measurement instrument, as

discussed in the preliminaries, is defined in terms of the state id ⊗ ωψ: If we write the interaction as
W = e−i B̃X⊗X =


R3 dEX⊗1(x) ⊗ e−i B̃xX (using the above map B̃) then for any observable G on the

particle spaceH , Equation (2.3) gives

E∗∆(G)= (1 ⊗ ωψ)(W−1(G ⊗ E1⊗P(B̃∆))W )
=


R3


R3

dEX⊗1(y)G dEX⊗1(z)⟨ψ |ei B̃y·(1⊗X)E1⊗P(B̃∆)e−i B̃z·(1⊗X)ψ⟩
=


R3


R3
ψ∗(B̃(∆ − y)) dEX⊗1(y)G dEX⊗1(z)ψ(B̃(∆ − z))

=


∆

K∗xGKx,

where we have defined the operators

Kx = ⟨x|Wψ⟩ = ψ(B̃(x − X)) B

R3
ψ(B̃(x − y)) dEX⊗1(y).
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The “measured” observable (determined by the measurement process which gave the minimal
coupling above), obtained from Definition 2.7 as

∆ → E∗∆(1) = |ψ(B̃(∆ − X))|2 =

∆

K∗xKx,

is then not the spectral measure of X but an unsharp version: the PVM EX⊗1 has been replaced by
the POVM µB ∗ EX⊗1 with effects

�
µB ∗ EX⊗1)(∆� =


R3
µB(∆ − y) dEX⊗1(y)

smeared by the convolution with the probability measure µB(∆) B ⟨ψ |E1⊗P(B̃∆)|ψ⟩. For complete-
ness, note that the following explicit formulae hold:

�
µB ∗ EX⊗1�(∆)=


R3
µB(∆ − y)dEX⊗1(y)

=


R3
⟨ψ |E1⊗P(B̃(∆ − y))ψ⟩ dEX⊗1(y)

=


R3
⟨ψ |ei B̃y·(1⊗X)E1⊗P(B̃∆)e−i B̃y·(1⊗X)ψ⟩ dEX⊗1(y)

= E∗∆(1)
[while in fact (X ⊗ 1) ∗ µB B 

x(µB ∗ dEX⊗1) = X ⊗ 1, leaving the abelian algebra generated by
the position operators unchanged]. Note that

K∗xKx = |ψ(B̃(x − X))|2
are effect operators related via B̃ to the spatial distribution of matter (the operators Kx are of Kraus
type in the sense of Ref. 25).

We obtain the following interpretation. The operator µB ∗ EX⊗1(∆) is obtained from EX⊗1(∆)
by averaging over the operators dEX(y) with weights ⟨ψ |dE1⊗P(B̃(∆ − y))ψ⟩ determined by the state
of the magnetic field source, as well as the coupling B̃. We assume that ψ vanishes at infinity, in
which case

lim
B→∞

⟨ψ |ei B̃y·XdEP(B̃x)e−i B̃y·Xψ⟩ = δ(y − x), ∀x,y ∈ R3,

saying that in the unrealistic situation with infinite strength of the particle-field interaction; the
position of the particle is not smeared. As we discuss next, this would imply that it is impossible
to determine the energy of the electron. This limiting case serves merely to give intuition for the
interesting cases with finite ∥B∥. The stronger the B-field, the finer the discretization of the position
but the coarser the energy, as we shall now see.

The observables H0 and X are sharp and they do not commute, so it would appear as if the
interaction of the particle with the magnetic field makes it impossible to measure the energy of the
particle.23 But there is no contradiction because it is well known that smearing the observable H0

makes it jointly measurable with X. This smearing is precisely what causes the discretization of the
free Hamiltonian in the Landau problem, as we now explain.

We have already seen that the observable actually “measured” (by the field) is not X but a
smeared version. Therefore, all that needs to be done to obtain an Hamiltonian which is measur-
able in the presence of the magnetic field is to smear H as well. This conclusion comes from the
following important result, where ∆ → Q(∆) and ∆ → P(∆) denote the usual sharp position and
momentum observables taking values in B(H ) whereH = L2(R).

Lemma 3.3 (Recalled from Refs. 23 and 12). Let χ and η be the probability measures on R and
define position and momentum observables Qχ and Pη by

Qχ(∆) B

R

Q(∆ − q) dχ(q), Pη(∆) B

R

P(∆ − p) dη(p),



122104-11 Andreas Andersson J. Math. Phys. 57, 122104 (2016)

respectively. These are simultaneously measurable if and only if there exists a positive trace one
operator T ∈ B(H ) such that

χ(∆) = Tr{Q(∆)T}, η(∆) = Tr{P(∆)T},
for all Borel subsets ∆ ⊆ R.

Theorem 3.4. With the choice of measurement scheme (K ,1 ⊗ P,ωψ,Wq, B̃−1) of the coordi-
nate operator X on H as outlined above, a energy observable on H (i.e., a POVM on H whose
first moment is the selfadjoint operator H0) is simultaneously measurable if and only if its effects are
given by

H̃(∆)B

R3
|ψ̃(B̃−1p)|2 dEH0

(
∆ − p2

2m

)
,

for all Borel ∆ ⊂ R, where ψ̃(x) is the Fourier transform of ψ(p).
Proof. From the expression dµB(x) = ⟨ψ |dE1⊗P(B̃x)|ψ⟩ = |ψ(B̃x)|2 of the convolution measure,

it is clear that the trace operator T from the above lemma is T = |ψB̃⟩⟨ψB̃| in our case, where
ψB̃(x) B ψ(B̃x). Now the formulae become clear when we explicitly write out the Fourier trans-
form,

ψ(B̃x) =

R3
ψ̃(y)eiy·B̃x dy =


R3
ψ̃(B̃−1p)eip·x dp

since, using Lemma 3.3, we then see that the momentum observables P̃ on H are simultaneously
measurable if

P̃(∆)=

R3
⟨ψ |dE1⊗X(B̃−1p)|ψ⟩ dEP⊗1(∆ − p)

=


R3
|ψ̃(B̃−1p)|2 dEP⊗1(∆ − p)

for each Borel set ∆ ⊂ R3. �

The mapping

µB : R3 × F (R3) → B(H ), (x,∆) → dµB(∆ − x)
is continuous and each ∆ → dµB(∆ − x) is a probability measure (so µB is a “confidence measure”).
Viewed in another way, for each Borel set ∆, the map x → dµB(∆ − x) is a “fuzzy event.” Follow-
ing Ref. 22, we denote this map by ∆̃ and similarly in the momentum space. Then we can write the
relation between P̃ and EP⊗1 as

P̃(∆) = EP⊗1(∆̃).
Now comes the problem of recording the energy measurement. That is, we would like to see what
outcomes we could have, and so we should try to replace the fuzzy set ∆̃ by some ordinary set
such that we still get the probabilities described by EP⊗1. This is the problem of “reading the scale”
Ref. 11, III.2.4. We cover the momentum space R3 by disjoint cubes ∆n labeled by n ∈ N and
we pick one point p(n) in the center of each ∆n. The size of ∆n is chosen such that the support
of the shifted function x → ψ̃(x − B̃−1p(n)) lies in ∆n. Thus the side length of ∆n can be taken to
be the diameter of the support ∆(ψ̃) of ψ̃ multiplied by the field strength B, independent of n.
Define the discrete observable

P{∆n}(n) B EP⊗1(∆n), ∀n ∈ N.

Compose the pointer function B̃−1 with a map gB : R3 → R3 such that

gB(∆n) = p(n), g(R3 \ ∆n) ∩ {p(1),p(2), . . .} = ∅.
Going over to the energy operator H0, the cubes are replaced by disjoint intervals In ⊂ R with the
length proportional to the field strength B. Write H{In}(n) B EH0(In) for this rescaled Hamiltonian.
Then one shows the following (c.f. (Ref. 11, III.2.6)).
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Proposition 3.5. H{In} is the measured observable in the energy measurement from Theorem
3.4 with the modified pointer function gB ◦ B̃.

Thus, as long as we only obtain the energies nω for n ∈ N0, where ω B B/2m, the energy can
be measured in the presence of the X-measurement that we postulated.

Theorem 3.4 gives a condition which the momenta (hence energy) of a free electron in the
presence of the magnetic field must satisfy. The stronger the coupling to the magnetic field the
less is the position operator affected by this coupling; the “position measurement” by the field is
accurate. On the other hand, the stronger the B-interaction the more smeared will be the subse-
quent (or rather joint) energy-measurement. Regarding the measurability we also found above that
(P − qA)2 suffices. We have then realized that the gauge field is equivalent to a smearing leading
to the discretization as understood in terms of quantum measurements. The interaction with the
magnetic field, which is always present in observations on slower time scales, leaves the system
with an algebra of discrete operators.

There is an important distinction between this smeared observable and the smearing that one
usually has in mind when such a “fuzzification” of a sharp observable is considered, i.e., the usual
picture of the experimental error and noise. In the present case, the magnetic field interaction is
supposed to occur very fast and with extremely many repetitions. Thus it is too regular for being
regarded as noise; it will give the same influence on all our measurements.

Finally let us stress that the same argument can be applied whenever there is a comparison of
two interactions, accounting in this way for quantum discreteness.

IV. POTENTIAL ENERGY

A. Pauli no-go theorem circumvented

In the usual formulations of quantum and classical physics, the Hamiltonian H is bounded from
below. Hence the existence of a selfadjoint operator X0 on the same Hilbert space with [X0,H] = i1
would be a contradiction, Refs. 37, 34, and 30 (Sec. 13.2), as seen from the covariance property
eiλX0EH(∆)e−iλX0 = EH(∆ + λ) of the spectral measure of H . This observation is called the Pauli
theorem.

However, if the system is in an equilibrium state ω then the generator of time translations in the
natural choice of the Hilbert space (the so-called GNS representation Hω of the observable algebra
M associated with ω) typically has the whole line R as spectrum. There are several unitary groups
acting on Hω implementing the time translations on the image of M as an algebra of operators
on Hω. The naive choice of such a group, for avoiding the Pauli theorem, would be to look for an
operator with a purely absolutely continuous spectrum R, since this would ensure the existence of a
conjugate operator X0. However, the most natural choice is to take the Liouvillian L defined by

LΩ = 0,

where Ω ∈ Hω is the vector such that ω(A) = ⟨Ω|AΩ⟩ for all A ∈ M. If M = B(H0) for some
Hilbert spaceH0 then

L = H ⊗ 1 − 1 ⊗ H = H − H̃ (4.1)

acting on Hω = H ⊗ H = L2(H0), where L2(H0) is the algebra of the so-called Hilbert-Schmidt
operators, H is the Hamiltonian, and H̃ is equal to H acting from the right. We shall not need this
explicit realization ofHω but (4.1) shows that the spectrum of L is the set of energy differences (the
transition frequencies of the system). The Liouvillian plays an important role in most applications
of open quantum systems,7 e.g., in nonlinear spectroscopy.35

In many interesting cases, L has absolutely continuous spectrum R plus the single isolated
eigenvalue 0 corresponding to Ω embedded in this absolutely continuous spectrum.39 Consider the
Hilbert space decomposition

Hω = CΩ ⊕ (CΩ)⊥. (4.2)
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Restricting L off the one-dimensional subspace CΩ spanned by Ω, it is unitarily equivalent to
multiplication by x on L2(R,dν), where dν(x) is a measure which is absolutely continuous with
respect to the Lebesgue measure. Hence it is possible to find an operator X0 on (CΩ)⊥ such that

[L,X0] = i1.

This will be the generator of energy translations. With respect to the decomposition (4.2), we can
write any operator A onHω as

A = *
,

A11 A12

A21 A22

+
-
.

The deformations of L which we obtain using X0 as a generator will thus be of the form L + V22 with
V22 an operator on (CΩ)⊥.

In short, as long as we stay in the equilibrium representation defined by an equilibrium state
on the observable algebra, the Pauli theorem is automatically circumvented. This will be used in
Subsection IV B.

Remark 4.1. If X1,X2,X3 and P1,P2,P3 are second quantizations acting on the Fock space then
we have [X j,Pk]/i = δ jkN where N is the number operator. Hence there is a subspace CΩ on
which [X j,Pk] = 0 and we are in the same situation as above. Both X j and Pj must annihilate the
vacuumΩ.

B. Deforming the Liouvillian

Let us from now on study interactions with quantum systems which are in an equilibrium state.
Suppose observables of a given quantum system are represented by operators acting on the

equilibrium Hilbert space Hω. The space-time translations on the system are mathematically
described as a unitary group onHω parameterized by R4. Motivated by the discussion in Sec. IV A,
we assume that the generators (Pµ) = (L,P1,P2,P3) of the unitary space-time transformations have
purely absolutely continuous spectrum except for an isolated zero corresponding to the vector Ω
implementing the state ω. We then define (X µ) = (X0,X1,X2,X3) to be operators on (CΩ)⊥ which
satisfy [Pµ,Xν]/i = δνµ1.

LetK be another Hilbert space and consider the unitary onHω ⊗ K given by

We = e−ieΘµνX
µ⊗Xν

, Θµν B

*.....
,

0 −E1 −E2 −E3

E1 0 0 0
E2 0 0 0
E3 0 0 0

+/////
-

for some real constants E1,E2,E3, and e, where Xν’s acting on K are assumed to have properties
analogous to X µ’s acting on Hω (thus the space K is also describing something like a system in
equilibrium). At this point, it is useful to recall how we reasoned before: a measurement of the coor-
dinate operators of a quantum system corresponds to boosting up the system (nonrelativistically).

Proposition 4.2. For any normal state ϕ on B(K ) with ϕ(X µ) < +∞ for all µ = 1,2,3,4, the
measurement (K , ϕ,We) of the coordinate operators X µ onHω deforms the Liouvillian L = Lω into

LeΘB (ι ⊗ ϕ)[W−1
e (L ⊗ 1)We] = L + e


R

ϕ[dE1⊗X(x)]E · x,
where E B (E1,E2,E3) and E · x B E1x1 + E2x2 + E3x3. Applying Ad(W ) to the momenta gives

eiΘµνX
µ⊗Xν(Pk ⊗ 1)e−iΘµνX

µ⊗Xν
= e−iEkX

k⊗X0(Pk ⊗ 1)eiEkX
k⊗X0

= Pk ⊗ 1 − Ek1 ⊗ X0.

Defining the potential energy as V = eΦ B E · ϕ(X), the energy operator in the presence of a
constant electric field would for the subsequent measurement onHω appear as

LeΘ = L + V,
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and Hω cannot be separated from Hω ⊗ K under such conditions (the electric field system K and
the systemHω appear “entangled” to an observer interacting via slower energy transfer).

The classical electromagnetic field (using same notation),

E = −∇Φ − ∂A
∂t
,

thus manifests itself via the vector potential E1 ⊗ X0 and the scalar potential Φ = V/e. Still, the
operator X0 is probably best regarded just as a generator of energy transfer.

Adding Proposition 4.2 to the discussion in Sec. III, we conclude that the interaction of a
quantum system with an electromagnetic field is recovered using an evolution operator e−iFµνX

µ⊗Xν

where the skew-symmetric matrix Fµν is none other than the electromagnetic force,

Fµν B
*.....
,

0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

+/////
-

. (4.3)

C. Gauge structure

If θ is a differentiable real-valued function on R4 then the unitary U B eiθ(X ) satisfies

UPU−1 = P − ∇θ, ULU−1 = L − ∂θ
∂t
, (4.4)

and the system is said to be gauge invariant under the transformations (4.4) precisely because they
are implemented by a unitary in the system Hilbert spaceHω. The motivation for this is if we apply
U to vectors ψ ∈ Hω at the same time as (4.4), everything remains unchanged (Ref. 26, Section 5).

The same transformations (4.4) can be achieved by the replacement

Aµ → Aµ + ∂µθ(X), µ = 0,1,2,3 (4.5)

in the interaction W = e−iX
µ⊗Aµ ∈ B(Hω ⊗ K ). We see that replacements such as (4.5) are pre-

cisely those which can be implemented by “local unitary transformations,” i.e., by unitaries acting
on Hω alone. They can be achieved without an external interaction and should be regarded as a
gauge degree of freedom in the system.

V. CLASSICAL LIMIT

A. Phase-space quantum mechanics and Rieffel deformations

Quantization requires a choice of ordering of operators. Let us recall some aspects of “Weyl
quantization,” which corresponds to the symmetric ordering. For a nice phase-space function
f : Rn × Rn → C, the Weyl quantization Op( f ) is an operator on L2(Rn). For f , g ∈ S(Rn × Rn)
(Schwartz space), the product Op( f ) Op(g) is again a Weyl operator. Therefore, the composition
of Weyl operators defines implicitly a noncommutative product ×Θ on an algebra of functions on
Rn × Rn,

Op( f ) Op(g) = Op( f ⋆ g).
This product (called the “Moyal product”) has an explicit integral formula

( f ⋆ g)(x) =

R2n×R2n

f (x + Θz)g(x + y)e2πiz ·y dz dy,

where Θ =
� 0 1
−1 0

�
is the standard symplectic structure on Rn. If one defines an action α of Rn × Rn

on S(Rn × Rn) by translations,

(αz( f ))(x) B f (x + z),
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then f ⋆ g can be expressed as

f ⋆ g =

R2n × R2nαΘz( f )αy(g)e2πiz ·y dz dy.

The Rieffel deformation38 amounts to defining such a deformed product on a general C∗-algebraA.
He shows that it has nice properties and makes sense also ifA is not commutative.

In fact, if α is an action of Rn on an algebra of observables A (a C∗-algebra would suffice),
the deformation of operators that we obtained from measurements (“warped convolution”) can be
affected by keeping the undeformed operators and instead introducing a deformed product ×Θ,
where Θ is the same deformation matrix as the one used for the warped convolution. The elements
A,B smooth under the action α onA form an algebra under ×Θ, which is explicitly given by

A×Θ B =

Rn×Rn

αΘx(A)αy(B)e2πi x ·y dx dy. (5.1)

If AΘ denotes the warped convolution of an operator A with respect to the same action α and matrix
Θ, then the important relation is (see Ref. 8)

AΘBΘ = (A×Θ B)Θ. (5.2)

For more information about the relation between the Rieffel deformation and warped convolution,
see Ref. 2.

To each such product ×Θ, there is an associated Poisson bracket on the subalgebra of α-smooth
elements.

Definition 5.1. Let α be an action of Rn on a C∗-algebra A and let Θ be a skew-symmetric
n × n matrix. We say that a Poisson bracket {, ·,}Θ has the same direction as the deformation (5.1)
if it corresponds to the first-order bidifferential operator in the asymptotic expansion of the product
(5.1).

Explicitly, for elements A,B ∈ A smooth under α, such a bracket is given by Ref. 38 (Sec-
tion 6),

{A,B}Θ =
n

j,k=1

Θ j,k(X jA)(Xk A), (5.3)

where X j denotes the differentiation in the jth direction of Rn via α.
When Θ is the standard symplectic structure on Rn, the Poisson bracket is just the canonical

one. As we discuss in Sec. V B, the case when Θ is the force matrix (4.3) gives a Poisson bracket
which resembles the one in Feynman’s approach to electromagnetism.

B. Feynman brackets meet Rieffel deformations

Let us now show that Maxwell’s theory of electromagnetism arises as the classical limit of the
interactions between two systems we have modeled according to the quantum measurement theory.

First, we recapitulate why a deformation of the operator multiplication could be a good approx-
imation for the effect of a measurement interaction. We always discuss the interaction

FµνX µ ⊗ (Xν + ∂µθ(X)) = X µ ⊗ Aµ,

where A = (A0, A1, A2, A3) is the gauge potential and θ is as in Sec. IV C.

(i) Measurement using e−iX
µ⊗Aµ deforms the operators onH via a very peculiar warped convo-

lution, namely, one which is unitary implemented.
(ii) There is always a version, corresponding to ignoring the second system K , which is obtained

from another warped convolution. Namely, it comes from the action αp(T) B ei pµX
µ
Te−i pµX

µ

on T ∈ B(H ) and defines TΘ by (2.2) where Θ = F refers to the constant force matrix (4.3).
(iii) The relation SΘTΘ = (S ×ΘT)Θ defines a deformed product ×Θ on the algebra of smooth

elements in B(H ).



122104-16 Andreas Andersson J. Math. Phys. 57, 122104 (2016)

We can describe a spacetime variation in Aµ if we smear the field with some smooth function
g ∈ S(R4) (“form factor” in x-space), defining

Aµ(g) B

R4
g(x)µFµν(xν + ∂µθ(x)) dx,

where the summation is understood for vectors (xµ) in expressions like xµxµ but not in xµxµ.
For the purpose of discussing the classical limit, we now consider observables parameterized

by space-time, in the spirit of the quantum field theory. Let Λ be a region in R4 containing the
system of interest. For each subregion O ⊆ Λ, we associate a C∗-algebra A(O) containing the
observables whose expectation values are, in the absence of interactions, functions of points in O
only (i.e., they do not depend on the points outside O). We thus have A(O1) ⊆ A(O2) whenever
O1 ⊆ O2. Each A(O) is supposed to act on the same Hilbert space H . Now we want to describe
an interaction with the system O ⊂ Λ of the form W (O) = e−iX

µ⊗Aµ(g ), where the tensor product
H ⊗ K contains the state vectors of the total system and the form factor g is supported in O. Let

αp(X) B ei pµX
µ
Xe−i pµX

µ
, X ∈ B(H ), p ∈ R4

be the associated action on B(H ) that we get by ignoring the second systemK .
We may let O be sufficiently small for the interaction unitary W to not vary over the size of O

(the “dipole approximation” with respect to the size of O). Then for any point x ∈ O, the interaction
with A(O) is given by W (x) = e−iX

µ⊗Aµ(x) = e−iFµν(x)X µ⊗Xν
, where F(x) is the force matrix (4.3)

with entries Fµν(x) determined by this fixed x. For elements S, T ofA(O) which are smooth for the
action, the deformed product is

S ×F(x)T =

R4×R4

αF(x)y(S)αq(T)e2πiq ·y dy dq.

We require that A(O) contains all operators f (P) for f ∈ C0(R4) which are functions of the
momenta P = (Pµ) and whose Fourier transform is supported in O. For two such operators, f1(P)
and f2(P), we have

f1(P)×F(x) f2(P) =

R4×R4

f1(P + F(x)y) f2(P + q1)e2πiq ·y dy dq.

To obtain a Poisson bracket on A(O), we first consider the commutative subalgebra generated
by f (P)’s. The momenta P0,P1,P2,P3 correspond to the coordinate functions p0,p1,p2,p3 on the
momentum space R4. Recall the standard definition of a Poisson bracket on an algebra of smooth
functions on a Lie group (Ref. 14, Section 3.1),

{ f , g}(x) B
4

µ,ν=1

{pµ,pν}(x) ∂ f
∂pµ

∂g

∂pν
, f , g ∈ C∞(R4).

If this is supposed to be in the same direction as the deformation (see Definition 5.3) then compar-
ing with the right-hand side of Equation (5.3) we see that

{pµ,pν}(x) = Fµν(x). (5.4)

The coordinate operators X0,X1,X2,X3 are defined to be operators on H satisfying [X µ,Pν] =
iδµν 1. If the Fourier transform of f ∈ C0(R4) is supported in O then [h(X), f (P)] is supported on
supp(h) ∩ O. In that way, the parameterization x = (xµ) of space-time R4 is given by the spectral
values of X = (X µ).

For operators on B(H ) which are sufficiently smooth under the actions of both e−i x
µPµ and

e−pµX
µ
, we can replace the operator multiplication by the Moyal product. These operators are thus

identified with functions on R4 × R4. Taking the limit ~ → 0, we get a bracket including the term
(5.4) as well as the standard term {xµ,pν} = δµν 1. This is the classical limit of A obtained when
both F and ~ go to zero. On the classical level, the brackets (5.4) define a function of x ∈ R4.

There have been many papers discussing the derivation of Maxwell’s equations using nonstan-
dard Poisson brackets (the most inspiring for this work being29,6). According to Dyson,17 the first
ideas of this sort are Feynman’s, hence the name “Feynman brackets,” even though Feynman
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assumed a commutator instead of a Poisson brackets, and his nonrelativistic setting made it hard to
identify the force components Fµν as the structure functions of such a bracket. We could use their
arguments to take the final steps to the Maxwell equations. However, the way we found F makes
this unnecessary.

For, we started from the unitary e−iFµνX
µ⊗Xν

and defined the magnetic and electric fields B,E
as the components of F, identifying at the same time the relations B = ∇ × A and E = −∇Φ − ∂tA.
As is well known, this is enough to obtain the field equations. Explicitly, with x0, x1, x2, x3 the dual
basis of R4 for which the coordinate operators (and hence ∇) corresponds, the force satisfies

∂Fνρ
∂xµ

+
∂Fρµ
∂xν

+
∂Fµν
∂xρ

= 0,

which gives the two homogeneous field equations. Next, ∂µ∂νFµν = 0 implies

∂νFµν = jµ

for some source field jµ. This gives the remaining two equations.
The aim of this section was not to derive classical electromagnetism using a minimal set of

mathematical assumptions. It is hard to beat Feynman and followers in this aspect. Rather, the point
is that the interaction e−iFµνX

µ⊗Xν
represents quantum disturbances which accumulate to manifest

themselves as classical forces. There was a physical motivation for introducing the force based on
the most basic model for interactions (viz. the von Neumann model).

VI. CONCLUDING REMARKS

We have seen the relevance of the notion of the sequential measurement in a simple example
where it accounts for the effect of a magnetic field on the quantum system of a charged particle
moving in space. There the interaction with the magnetic field constitutes a first measurement and
subsequent measurements done by some experimentalist will be affected by that interaction. It is the
much faster time scale of the magnetic-field interaction with the particle that makes us view it as
the interaction “prior” to the subsequent one performed by some experimentalist. The result is that
the experimentalist can only get a correct description if he includes a minimal coupling term in the
Hamiltonian. Such a simultaneous measurement also requires that the measured energy observable
is a coarse-grained version of the Hamiltonian. Our main insight is thus that such a discretization
appears from the competition of the interactions described by the same theory.

We have assumed that the energy-momentum P = (L,P1,P2,P3) has purely absolutely contin-
uous spectrum except for an isolated zero eigenvalue for a common eigenvector. Such a setting
appears for free particles or in representations of equilibrium states on local observable algebras in
the algebraic quantum field theory. In particular, we used an infinite-dimensional Hilbert space H .
Although usually not needed in practice, we have thus added infinitely many degrees of freedom to
make it possible for electromagnetism to appear using only Heisenberg commutation relations.

To make contact with ordinary quantum mechanics where the system is usually taken to be
a finite-dimensional Hilbert space H � Cn, we mention that such a setting amounts to considering
H ⊗ H, which can also be identified withH ⊕n, the direct sum of n copies ofH .

The explanation of quantum discreteness that we gave in Sec. III A is just the quantum Zeno
effect.19,18 Namely, the latter can also be understood as resulting from two competing interactions
of a system interacting with two different quantum systems. What we have done is simply to isolate
what such competing interaction is needed in order to get electromagnetism as a classical limit of a
one-level system.
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