114 research outputs found

    On gauge invariant regularization of fermion currents

    Full text link
    We compare Schwinger and complex powers methods to construct regularized fermion currents. We show that although both of them are gauge invariant they not always yield the same result.Comment: 10 pages, 1 figur

    A calculation with a bi-orthogonal wavelet transformation

    Get PDF
    We explore the use of bi-orthogonal basis for continuous wavelet transformations, thus relaxing the so-called admissibility condition on the analyzing wavelet. As an application, we determine the eigenvalues and corresponding radial eigenfunctions of the Hamiltonian of relativistic Hydrogen-like atoms.Comment: 18 pages, see instead physics/970300

    Width-amplitude relation of Bernstein-Greene-Kruskal solitary waves

    Full text link
    Inequality width-amplitude relations for three-dimensional Bernstein-Greene-Kruskal solitary waves are derived for magnetized plasmas. Criteria for neglecting effects of nonzero cyclotron radius are obtained. We emphasize that the form of the solitary potential is not tightly constrained, and the amplitude and widths of the potential are constrained by inequalities. The existence of a continuous range of allowed sizes and shapes for these waves makes them easily accessible. We propose that these solitary waves can be spontaneously generated in turbulence or thermal fluctuations. We expect that the high excitation probability of these waves should alter the bulk properties of the plasma medium such as electrical resistivity and thermal conductivity.Comment: 5 pages, 2 figure

    Determinants of Dirac operators with local boundary conditions

    Get PDF
    We study functional determinants for Dirac operators on manifolds with boundary. We give, for local boundary conditions, an explicit formula relating these determinants to the corresponding Green functions. We finally apply this result to the case of a bidimensional disk under bag-like conditions.Comment: standard LaTeX, 24 pages. To appear in Jour. Math. Phy

    Approximate Analytic Solution for the Spatiotemporal Evolution of Wave Packets undergoing Arbitrary Dispersion

    Full text link
    We apply expansion methods to obtain an approximate expression in terms of elementary functions for the space and time dependence of wave packets in a dispersive medium. The specific application to pulses in a cold plasma is considered in detail, and the explicit analytic formula that results is provided. When certain general initial conditions are satisfied, these expressions describe the packet evolution quite well. We conclude by employing the method to exhibit aspects of dispersive pulse propagation in a cold plasma, and suggest how predicted and experimental effects may be compared to improve the theoretical description of a medium's dispersive properties.Comment: 17 pages, 4 figures, RevTe

    On deformation of electron holes in phase space

    Full text link
    This Letter shows that for particularly shaped background particle distributions momentum exchange between phase space holes and the distribution causes acceleration of the holes along the magnetic field. In the particular case of a non-symmetric ring distribution (ring with loss cone) this acceleration is nonuniform in phase space being weaker at larger perpendicular velocities thus causing deformation of the hole in phase space.Comment: Original MS in EPL style, 1 Figur
    • …
    corecore