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ABSTRACT

The combined effects of an electric field and obliquely propagating
plasma waves on the tail of an electron distribution function are
studied analytically. The runaway production rate is enhanced by many
orders of magnitude if the source, even though weak, drives waves with
parallel phase velocities around the critical velocity. A practical
formula to quantify this phenomenon is derived. Depending on the
source strength two different regimes may occur : one is stable and
linear with the rf power, whilst the other, which saturates, may be

unstable. Connections with experiments are discussed.



1. INTRODUCTION

Runaway electrons and related phenomena have been a recurrent
topic since the earliest investigations on controlled fusion research.
The present day experiments on lower hybrid heating (HARVEY et al.,
1981) or on rf-driven current for steady-state tokamak operation
(YAMAMOTO T. et al., 1980; OHKUBO K. et al., 1981; MAEKAWA T. et al.,
1981) might well revive interest in the subject. Although in principle
there should be no dc electric field in the steady-state operation -
and de facto no runaways produced - present experiments always
involve an electric field. Thus, there exist incentives for studying
the role of imposed waves in the runaway kinetic theory. It has even
been proposed to use the runaways deliberately as current carriers in

a steady-state tokamak (BHADRA D.K., 1980).

In an earlier report (LIU C.S. et al., 1980) we showed that the
quasilinear diffusion of the electrons by the waves of the lawer
hybrid branch could enhance the runaway production rate by many orders
of magnitude. More recently, observations on lower hybrid experiments
in the USA (HARVEY R.W. et al., 1981) and in Japan (OHKUBD K. et al.,
1981; MAEKAWA T. et al., 1981) have been interpreted in terms of
rf-induced runaway electrons, thus corroborating the first
observations made in ATC (BOYD D.A.et al., 1976). In view of this, it
seems desirable to have available a theory for this interesting
effect. Our previous work was limited by an assumption about the
spectrum; the latter was not self-consistent with the distribution
function but given a priori, so that a direct estimation of the

strength of the rf source involved was impossible. The different



approach used here allows us to remove this limitation and to provide
a more comprehensive study of the phenomenon. Also the aim of this
paper is to give a simple expression for the runaway production rate
in terms of the source strength.

The paper is organised as follows. In section 2 we formulate the
model and present some qualitative considerations. The stationary
distribution and flux of runaway electrons are calculated in section
3. In section 4 we study the role of the anomalous Doppler interaction

and conclude our work in section 5.

2. MODEL

2.1 Qualitative considerations

Let us consider a magnetised plasma, wee 2 Wpe (where weg
and Wpe are the electron cyclotron and plasma frequency,
respectively), in the presence of a weak dc electric field E << Egq
which is parallel to the magnetic field. Here Ec is the critical
electric field E. = 4me’nlnA (mvg?)-!, where 1nA is the Coulomb
logarithm and e,m,n and Ve are the electron charge, mass, density
and thermal velocity, respectively. Under these circumstances the
collisional drag due to Coulomb collisions dominates over the electric
field acceleration for most of electrons, and only a small fraction of
particles, varying exponentially, will run away. In the velocity space
an important cross-over point Ve may be defined by balancing the
electric field force against the frictional drag due to Coulomb

collisions, i.e.
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eE =mY, v, /y’ (1)

with the collision frequency vg = 4me*nlnA (m2v83)’1. Electrons with
velocities v > vp will be gradually accelerated by the electric
field towards the velocity of light. On the other hand, electrons with
v << vg will probably remain in the Maxwellian distribution. Around
v. = ve, the shape of the electron distribution function is very
crucial in determining the fraction of electrons which pass over the
critical velocity v, and so in determining the runaway production
rate. Now, this shape may be affected by the presence of waves with
the resonant velocity in this domain; if the quasilinear diffusion due

to the waves enhances the flow of electrons accross v, an increased

runaway production rate may be expected.

Let us now turn to the branches of electrostatic waves in the
magnetised plasma which may resonate with electrons having velocities
around vc. Since we assume E < E, we have obviously
(ve/ve) = ~(E/E)Y/2 5> 1 (typically in the range 4-10).
Naturally, it is electron waves that we consider. Their dispersion

relation in the cold plasma approximation reads (MIKHAILOVSKII A.B.,

1974)
1 (A a)z 2
| — Wee cosh — ——i_“_z— Ssnb = 0 . (2)
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Here 6 is the angle between the magnetic field and the wave vector K.

From the two branches involved, the upper hybrid and the lower hybrid



ones, we will consider the latter whose dispersion relation in a
strongly magnetised plasma reduces to

W= W, cos@ (3)

Besides the consideration of simplicity, the choice of the 1lower
hybrid branch is dictated by the existence of data from lower hybrid
experiments (YAMAMOTO T. et al., 1980; HARVEY R.W. et al., 19813
OFKUBO K. et al., 1981; MAEKAWA T. et al., 1981). In fact, the

adequate dispersion relation is (MIKHAILOWSKII A.B., 1974) -

(A)Z= G):e (Cosle —:.:l_\-f ) )

where mj is the mass of the ions. For waves which are not too
perpendicular to the magnetic field (cos?6 >> mg/m;)  this
dispersion relation matches to equation (3).

The wave-particle resonances occur at w = k. v (Cerenkov

o Cu
resonance) and at w-nuwpe = k,Vv, » where n is an integer either
positive (normal Doppler resonance) or negative (anomalous Doppler

resonance). for wee >> w only the first two harmonics are to be

retained, n = *1,

In the experiments the launched waves may have two opposite
directions with respect to the electric field. For waves propagating
in the same direction as runaway electrons, k,> 0, it is sufficient to
consider the Cerenkov resonance at the velocity v © = w/k,/ and the
anomalous Doppler resonance at the velocity vpd = (0 + wee) /K, =

wce/k" - In the case of a "standard" runaway tail the derivative of



the distribution function is negative and the Cerenkov interaction
leads to a damping of the waves; resonant electrons are then
accelerated and may pass over the critical point Ve+ In contrast,
the anomalous Doppler interaction leads to an emission of waves and a

pitch-angle scattering of the electrons (PARAIL V.V. and POGUTSE 0.P.,
1976).

For waves propagating in a direction opposite to the runaway
electrons, k,< 0, the important resonances are that of Cerenkov again
and the normal Doppler resonance at the velocity vy = (w-wpe)/k, =
wce/|ku$' The Cerenkov interaction accelerates the resonant

electrons to more negative velocities but the electric field
brings them back towards the bulk of the distribution function, so
that no change in the runaway rate may be expected. The usual Doppler
interaction acts, however, on the side of the distribution with
positive velocities; the waves are damped and the runaway tail tends
to become isotropic, which leads to the formation of a positive
slope. The absorption of a plasmon via the normal Doppler effect is
characterized by an increase in the gyration energy of an electron AE
= flugg, and by a decrease in its parallel energy AE = A wee-w) »
For obliquely propagating waves in a magnetised plasma, one has wqe
>> w and the plasmon energy may be neglected in comparison with the
kinetic energy transfer. Thus, the electrons with velocities vp are
pitch~angle scattered by the externally driven waves along the lines
of nearly-constant energy. Therefore, the runaway electrons with
velocities v, < vp whilst accelerated by the electric field will pile

up around vp; as a result a positive slope will appear on the



runaway distribution preventing the electrons from running away. This
situation, which is analogous to the runaway kinetic instability
described by many authors (PARAIL V.V. and POGUTSE 0.P., 1976; LIU
C.5. et al., 1977; LIU C.S. and MOK Y., 1977; PAPADOPOULOS K. et al.,
1977; HUI B.H. and WINSOR N., 1978; PARAIL V.V. and POGUTSE 0.P.,
1978; MUSCHIETTI L. et al., 1981), is complicated because of the
unstable spectrum. A quantitative investigation would require the
assistance of a numerical code and a separate study which is out of
the scope of this paper. Let us say simply that the cyclotron emission
is expected to be enhanced and the runaway production rate to be cut

down or even cut off in the case of a strong source.

Henceforth, we consider the case of waves propagating in the same
direction as the runaway electrons (k, > 0), for which analytic
calculations may be performed.

2.2 Basic equations

The kinetic equation for the electron distribution is then
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The spectrum of the waves obeys the quasi-linear equation

-

Q.E(Et)—.:z(xo”(‘-%)g(/?,t)+S(k) (7)

At

where Yo corresponds to the Cerenkov interaction

=T RS- ko) @

and Y, to the anomalous Doppler interaction

- pAf e B DR

v,
! W.. v, 14

The quantities are normalized according to k =+ k/AD,

' 7
VIV, te t/mpe, f > Fn/ves, € 3 and E + E(4mnT). Here

K > ek4wnTAD

Ap is the Debye length and T the electron temperature. In equation
(4) we have modelled the collisions by a Vedenov (VEDENOV A.A., 1968)

term with v(v) = vy v-3

. This term is linear and simulates situation
in which the dissipation energy is removed into a thermal reservoir
(KULSRUD R.M. et al., 1973). On the other hand, this model is conve-

nient for our purposes since it describes well the competition between



the externally driven waves and the relaxation of the distribution
function towards a Maxwellian, which leads to the creation of a
substantial current. It is worth mentionning that in our units the

y
ratio (vo/E)" is just the critical velocity vg.

The term S(E) in equation (7) represents the external source that
drives the waves. For simplicity we will assume that it is
unidirectional and constant within a certain range of wavenumbers
determined by the parallel refractive index and the electron

temperature:

S 8((.059—(0590) ‘ror kz<k< é'
S(‘E) - (10)

0 0“!6? w:ise

Two points are still worth mentioning. Firstly, since the local shape
of the distribution is important with respect to the parallel velocity
only, the Maxwellian ansatz discussed by MUSCHIETTI L. et al. (1981)

may be used

2

A
{00, b) = Flut) gy o b ) -

1

Secondly, the anomalous Doppler interaction and the Cerenkov interac-

tion have neither the same "efficiency" in diffusing particles nor the
. d _ . c

same resonant velocity. We have v, = wce/(kcose) = V. wce/cose.

Since wee > 1 and vp© >> 1 the resonant velocity vrd may lie

above the velocity of light for very obliquely propagating waves as in

lower hybrid experiments. In this case the only resonance to be
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considered is the Cerenkov one. If the anomalous Doppler interaction
has to be considered its "efficiency" is reduced by the factor
(k v /sze)Z as compared to the Cerenkov one so that we may treat it
by means of a perturbation method (cf. section 4). The next section

will be devoted to the Cerenkov interaction only.

3. DISTRIBUTION AND FLUX OF RUNAWAY ELECTRONS IN PRESENCE OF

PLASMA WAVES

Let us neglect the terms due to the anomalous Doppler interaction
in the quasilinear equations (4) and (7), and introduce the ansatz
given by equation (11) for the electron distribution function and use
spherical coordinates for the spectrum. One obtains the following

equations where v signifies v,

F

—
—
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lE(k,O,t)=?—(x-—g—°)£ +S(k,9)) (14)

(15)
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Under the influence of the electric field and the quasilinear damping
of the waves the distribution F grows a tail towards v = + . A

stationary self-consistent state is eventually established in the

system,

3.1 Stable stationary solution and runaway production rate

After dispensing with the time derivative in equation (12) a first

trivial integration yields

oF =

where the constant of integration A is identified as the flux of
runaway electrons in the limit v + »: A = E F(v + =), Of course, a
stationary distribution function involving a loss of particles at +=
implies an equivalent source at v = 0. A simple way to cope with this
problem is to ensure a constant number of particles by keeping F at
the Maxwellian value at v = 0. This assumption provides us with the
boundary condition which is necessary for integrating equation (16).

Yo is expected to be negative (an assumption that will be checked a
posteriori in section 3.2) and the spectrum is sustained by the source

S only (equation (10)). From equations (14) (15) we find

S §(cos0-cosd) [ H(R-k) - H(k-k)]

Y, - Mcosh k™ B.EI
Wy g

€(k,0)=

y  (17)

where H is the Heaviside function. Now the one-to-one correspondence

introduced by the Cerenkov resonance condition between the k-space and
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v-space allows us to use the v variable only. Thus on combining
equations (13) and (17) we have

D,(v)= %ﬁ%’_ [Hv-u) - H(o- 0] (¥, - Teosg, v E ) 1)

which may be simply substituted in equation (16). The range of
resonant velocities is limited by v, = k;=! and v, = k,~!. At this
point, two opposite cases must be distinguished: either the level of
spectrum is controlled by the Landau damping or the collisions prevent

it from being infinite (cf. Fig. 1).

Let us consider first the case |270| >> vy, an inequality which will
be interpreted in section 3.2 in terms of the source strength. We may
then write for F the simple linear differential equation

F=(Brv)F-Av’s S a(y

> 4 V) (19)

where the dot signifies the derivative with respect to v and the
notations FE = E/vgs A = A/vg, § = S/(2mvg), and A(v ,v,,v) = H (v-v;)

- H(v-v3) have been introduced. The general solution reads

Fefe Ju e - fawanlap(§-£1))

(20)

Cep(EL-1)

We set the constant of integration ¢ = 0 in order to have a bounded
solution for v + +» and determine A by matching the distribution to a

Maxwellian value (21)~'/2 at v = O:
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Flo) = KII = gIz(":f‘rz)

with

f
T, = [ deeep(f-F 1)
[¢] u;
Linu)=| 4 ep(2_ef)
v

~ Vi
I, is easy to calculate via the change of variables y = E 122/2-(2'5)"/7-

Since vg >> 1 implies (E)=A>> 1 one obtains simply

Il = %ﬁ axp( ;’-'—E,-)

Thus we recover the "classical" runaway rate (PARAIL V.V. and POGUTSE

0.P., 1978).

~ 3/1

~ | £
A - _l= JET‘idexP(-" (21)

m\\ -
S —

The second integral I, (v;,v,) may be evaluated by the saddle point

method. We write

v,
T, (v.v) ‘K de exp (-EE , 21 ds)
v

The argument of the exponential G(E) = —E 2"/‘, + 22/2 -2 '&2
~ oY% ~ % 47
has a distinct maximum for Zo-':(ZE);[I +(|--5’E)/2’]z

s -'/2 ~ ~ l/l '/l
and becomes negative above ZM”-‘J (E} [|+ (H 4 E ‘& E) } _

-2

Recalling E = ve~“ one has more insight into the behaviour of G(z):
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the maximum is situated around (1-E)VC and the cutoff around
I§(1-E 1nve) ve. Consequently, the waves play a significant role in
the rate of runaways if the interval [v;,v,] contains v., confirming
the qualitative discussion of section 2.1. On the other hand, waves
with high resonant velocities, above vac, do not play any role.

Let us assume now that the critical velocity lies well within the

interval [v,v,] (ve-v, > 2, Va-Ve > 2). One has

Vi
IZ(U,,UZ)QJ dz exp[G(Z‘) - (2-2) ('-‘tg-ZfZ)]
v .
= exp[6(2)] i‘}r exp [-4'(1-4F-28Y]

U-2

]

=T op [ & A (yhe)] (22)

Hence

~I

<(I) [@)*+ §I(v,u)]

2

~3/Z ~ ~
=I%-"QXP(;')[7‘— +Sfﬁq-'.—Ez-E axr(;—%—)]
= xo + g—l--%ig (23)

Obviously, for a small electric field (F equal$ a few percent) the
classical term 7\'0, which decreases exponentially, becomes negligible

and one has the convenient formula

4\/5/2
~/

+ E
A = - (24)
S |- 2E




-15 -

which shows that in this regime the runaway production rate is
linearly proportional to the power of the source. Nevertheless, it
must not be forgotten that this formula has been derived under the
condition ‘ZYol >> vg. It is therefore clear that the case of a very

strong source creating a plateau on the distribution function is not

treated by this formula.

In next section we investigate the conditions imposed on the source by
the above inequality whilst the opposite casel2y0\>> vy is deferred to
section 3.3. Anticipating the results we may emphasize that there is
a surprisingly broad range of S to enhance the runaway rate many
orders above the classical rate before a plateau appears on the

distribution function and formula (24) breaks down.
3.2 Validity of the solution and source strength

On considering equation (19) it is clear that the positive term of
the rhs '§A(v1,v2,v)/v2 makes the slope of F less negative, or possibly
changes even its sign. We must check that the condition for the
Cerenkov interaction to control the spectrum, -2y >> vy, holds.
Consequetly, conditions for the values of S will be found. For this
investigation equation (19) has been integrated numerically and the
behaviour of the solution has been studied. It turns out that it is
sufficient to consider the conditions which may be obtained analyti-
cally at the special points v, and v,.

From equations- (15) and (19) the condition -2y, >> v, reads

§ ~
Tecosh, [ (v~ %1) Flvo) + Av® -5 ]>»v

<

)
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or by using equation (24)

T
[4

2 ~ 5 ~ 5
ﬁwseo[(l-%l)USF(u)+S(-g} s 2E VY l)] » YV

For v > ve the first term is negative and the inequality holds for S
sufficiently big. In fact, it is sufficient to satisfy the condition

at vo so that

VO 2
)  ———
S > s v, . (25)

However, the source term S must not be so big that it violates the

condition at v, < vg:

g'('—i’-'s -zﬁ'—‘{‘-s)« ufF(u,)(.-_*ﬁz)_ Y,

v q‘-f v "TCOSBO
If v/v, << 1 it reduces to
3 y) ~ (26)
S «< vF(v) - ° =
Fv) T cos 6 S‘

where F(v,) is the quasi-Maxwellian value (cf. Appendix). It is worth
noting that the second term, proportional to vy, may be neglected for
typical tokamak parameters unless nearly perpendicular waves are in
question. As we shall see in the next section the critical value for
the source gé is important because it determines the frontier

between the linear regime and the regime of a strong source.
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3.3 Limit of a strong source

We now turn to the opposite case |2¥0| << vg. The diffusion

coefficient Dy (equation (18)) reads simply

D(U) = % A(U, ;UZIV)

[

with

~

b — S cas o, T cosh, S
27 V! Y,

i

On substituting equation (27) in equation (16) one obtains

#(l-l-bﬂ(tf,,&f“d)): (EV3‘ U')F‘Alf3

(27)

(28)

It is clear that F is always negative. If it were not the case some

v > vg with (E F - R)v3-vF>0 would exist. With increasing v this

inequality would be more and more satisfied. However, since A=EF(v+e)

(cf. equation (16)) it breaks down certainly at + =,

Now the negative slope of the distribution function is lessened

in the interval [vl,vz] by the presence of waves. In order to satisfy

the inequality ‘Zyol << vp large values of b (b >> 1) are necessary.

This imposes

b

On expressing b in terms of S we find

S>(V-Ev)F + Av®  vel

M‘[(u’-ﬁvg)': +AU‘3] « V,

(29)
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The rhs of this inequality is decreasing with v so that it is
sufficient to evaluate it in v,. We have seen in section 3.1 that the

interesting case is that with the ordering v; < vp < vy,. One then

has

§ » vF(v) (30)

which implies again the critical power density S, = v;3F (vy) (cf.
equation (26)) estimated with the quasi-Maxwellian value F(v,) given

in Appendix.

The solution to equation (28) has been considered in a previous report .

(LIU C.S. et al., 1980). The runaway production rate was found to be

A = i E™ exp [- l{f(s—%;)]

g @) (o0 efen)]

with the conditions |vi?-vg?| > 4 vg and the definitions

X. =(Uzz— U;Z)(E/‘fb)'/z ) l:=l,'l

L

For large values of b the rate is saturating at

o~ o U.'z \’,2 2 z-l
A =ﬁ'},—‘ E exp “z’("‘z—‘;cz)] (u-v’)
~1

\ ' (31)
X T N .
ca e R

Alternately, the saturation of the rate with an increasing value of S
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may be deduced from the inequality (29) evaluated in vg,

~ §

S »Avu or  SE " A
This clearly imposes that the rate A ceases to increase linearly with

~

the source, as S E 5/2, yet saturates and lets S to grow alone. The

characteristic value of b where the rate begins to saturate is given

t 2
| v, v,

which corresponds to a source of value

by

§ = Y (j; _;)(;__‘ﬂz) (32)
A 2MeosH, \ V° v/ -
If v; is not very high one has g; >> §g so that the regime of a

strong source (§ >> gc) is the saturated regime.

4. ROLE OF ANOMALOUS DOPPLER INTERACTION

The anomalous Doppler interaction may falsify the results of
section 3 in two manners. On the one hand, the distribution could
become unstable due to the increased number of particules in the
tail. Oblique plasma waves would then be excited and the resonant
runaway electrons pitch-angle scattered (PARAIL V.V. and POGUTSE 0.P.,
1976). This instability would result in a quasi-steady state similar
to that described by MUSCHIETTI L. et al. (1981). On the other hand,
the driven waves themselves could interact with the runaway electrons
via the anomalous Doppler resonance. The associated loss of parallel

momentum of the resonant electrons would then result in a reduction of

the runaway production rate.



- 20 -

4.1 Stability with respect to the anomalous Doppler effect

In order to test the stability of the stationary runaway
distribution (equation (20)), we introduce in the growth rate vy;

(equation (9)) the Maxwellian ansatz (equation (11))

.2
-~ T Snbeoshd [ Wee (33)
x\ Ty T o ’bu(-':F)+ k coso FJ .

The term wee/(k cosB) is the resonant velocity vpd which is
related to the Cerenkov resonant velocity by vrd = vrc wce/cose.

It ranges typically from 10 upwards and renders the
destabilizing term in equation (33) more important than the term with

the derivative. If we look for a sufficient criterion for stability we

may simply balance

-2
T sinBcosh L~ d
o U E() <o =T e

ce 74

eq<>)
[t

where the variable v is chosen to be the Cerenkov resonant velocity.

Therefore, vpd = wee V/cos 8 and the criterion reads

.2

Sin b v F(v?) <-2csh v 3

wce " W v ]

Let us replace F(vpd) by its approximation for high velocities
(cf. Appendix), aF/av|V by means of the differential equation (19)

and ﬁ’by its expression in terms of the source (equation (23)).
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One obtains

s.'z)‘e §E(|+ gf-zz‘;’ze) < waQU[ (l-ztg)(u-ﬁug)F(v)

e ce

This complicated expression is approximated at v = vy by

~ 3 <2
S < V F(v) (l p Sind U, ) ) (34)
reduces at v = ve to

Sinf f?Q < 4w,

and is estimated at v > v, by

Sing te 0 < 2 W,

Thus, unless we consider very oblique waves, for which the resonant
velocity vrd lies anyway above the velocity of light, both latter
inequalities are obviously satisfied and a sufficient criterion for

stability is obtained from equation (34)

~

S < U F(y)

Therefore, in so far as one disregards the case of a strong source,

the distribution function found in section 3 may be declared as

stable.

Let us now turn to the case of a strong source. The distribution

function is nearly flat from v; upwards and the growth rate y; has to
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overcome the collisional damping only for an instability to occur. The

threshold is given by (cf. equation (33))

1
1"1_ Smﬁ)gose [%(EF) +\IF] NI

ce

where the variable v is chosen to be the anomalous Doppler resonant
velocity. The optimum angle corresponds to (cos 8)2 = 1/3. The high
velocity portion of the distribution plays a role so that F may be

evaluated by (cf. Appendix)

2 ) 2 2 lﬂl
e e (¥ (- 0] (G002

where equation (32) with b > bg has been used. Hence, a necessary

condition for instability is derived

v (e !.f) ge (U-w)(-u) ”‘P["‘i"("i)]

vt V:- Uf
> szv (35)

As an example, for E = iy, vi = 5, vy = 15, Wee = 2, vy = 2+10-°

runaway electrons around 20 v, might already drive the instability.
4.2 Stimulated diffusion by the anomalous Doppler interaction

As the runaway electrons are gradually accelerated by the electric
field towards the velocity of light they may encounter the anomalous

Doppler resonance of the imposed waves vrd = (uce/(k cos 04). Of

course, this event implies that vrd lies below the velocity of

light and that 6, is not too close to =#/2. In lower hybrid

experiments, for example, this could happen in the periphery of the
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plasma. The interaction pitch-angle scatters the electrons that
diffuse in velocity space. Nevertheless, since there is no instability
but simply a stimulated diffusion due to the externally imposed waves,
the strength of this process depends on theb source. We shall see
that the action of a weak source (in the sense S << Sc) does not
stop the runaways but simply diminishes temporarily their parallel
momentum. This effect results in a correction to the runaway
production rate that will be calculated by means of a perturbation
method.

Each of the terms in equation (16) represents the different
particle fluxes involved. Now the term due to the anomalous Doppler
interaction in the kinetic equation (4) may also be integrated once
after having used the Maxwellian ansatz (equation (11)). Thus, we

obtain the particle flux term originating from the anomalous Doppler

interaction

() =-D, [L(nF) +vF]

with
LA o
D =~ (ae dk k' 0 cosd ._g_h. §(w-kveosd) e

ce
4]

The minus sign indicates that a backward flux, directed towards the
bulk of the distribution, is in question. However, this term is
assumed to be small in comparison to A and will be evaluated by means

of the solution of equation (19), which is considered as the zero

order solution.

The pitch-angle diffusion due to the anomalous Doppler

interaction is elastic (PARAIL V.V. and POGUTSE 0.P., 1976) so that
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the loss of parallel energy must balance the gain in the perpendicular

energy. Therefore

— (ITJ.) = —é v
a3t I
Do”;lu-
However, in a stationary state this increase in perpendicular enerqgy

must be compensated by the net convection of the electrons along the

electric field which is given by the runaway production rate A. Thus

we have

P—— S
a—

v A

Insofar as we have § << A we may expect that 3(T,F)/dv << v F. Thus,

CI.TL | @U’ . (37)

on introducing the asymptotic expression of F for high velocities

given in Appendix, one obtains
——— ~ 2
@(U):—DlAVC(\fJf_V-‘) . (38)
h
From Eq. (17) the spectrum driven by the source reads

2

€, = S §(ast-cosh) — R , ke k<k
T cosf, F('/k)

1-(39)

.

The exact dependence of F on v is given by the differential equation
(19) and is very complicated between v; and v, (cf. Fig. 1). We shall
model it roughly here with a v—* dependence. Since we have F(vp) =

-25E% from equations (19) and (24) we may use this value for
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normalization and write

Fv) = -2

, V, < ¥ <V,

<l

Performing the integrations in equation (36) where the spectrum is

given by equation (39) one obtains simply

—

5 — Sl." Go VO
! 4 Cos'd, V3

which is introduced in equation (38) to evaluate the backward flux

. 2 2
= - Sufl 90 Uc U: (40)
é" (v) 4 Cos'B, A Ik ( ' vt ) )

Combining the latter with equation (37) yields

.‘i’l"' = S'.'\ao !(__2 (‘+ Vc)
dv 4 cos'f, U

which implies approximately a logarithmic growth of T, with the .
velocity. It is worth noting that the pitch-angle scattering by the
Coulomb collisions results also in a logarithmic growth of T, (LIU
C.S. and MOK Y., 1977).

We now calculate the correction to the runaway production rate
caused by the backward flux &,. Inspection of equation (16) shows that
the correction to F satisfies
=

3
;= (Ev-v)F, +¢"(v)%A(M‘- V@0 ) )

GsB ! cosh

14

We look for a particular solution which vanishes at vowee/cos 8.
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It reads

Vo &, / Cos 6,

Sl ded @ Cep (L ER ) H(e-

v

F(}(U)'—'"l

cexp(EL- )

Very likely one has viwge/cos 6 > v, so that equation (40) may be
used for ¢, . Then

Uz(.,)“/COsO,
~ 2 ~ 4
(o) = dedeop(F-EL) (et
)
4 2
= v
X ng(E_\Z{_ - 3 ) . (42)
with
T -Slne
¢— I-.cos AU

Following the same procedure as for equation (20) we have to evaluate
equation (42) at v = O:

Folo) = - % I,

W, flosh,
de 2 e.xp(.%. _f & )

U; QLQ/(&S 69

with

V, W, v, wu
I3 ( cosO: ) Cos®, )~
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Hence the corrected runaway production rate is

. . E-ﬁi
K= (R o575 1

(43)
SU-’\ 9,; ‘I - E Ut 1_ 2 7’0 C
ol V.‘wf,c- u* s, exp[ "C°S"9°( - veos) ]

This correction may be important when compared to the "classical"
runaway rate Ko but is small when compared to the enhanced rate due
to Cerenkov § Es/z. Because of (coseo)’k in the exponent the
correction decreases very fast as the angle increases and the

stimulated diffusion takes place far above the critical velocity.
5. DISCUSSION

We have shown that the runaway production rate may be greatly
enhanced due to plasma waves with parallel phase velocities around the
critical velocity. The simple analytical theory, which has been
developed, provides a quantitative estimate of this phenomenon. Also,
a practical formula for the runaway production rate is derived:

A= 2{zn/(x*Ind) (E/E )%/ (P/T) (sec='em=?) where 1nA is the Coulomb
logarithm and P the rf power density.

This simplicity has a counterpart: as in the classical runaway
kinetic theories, our model is based not only on the usual assumption
of an infinite homogeneous medium, but also on the hypothesis of a
constant electric field. Because of this an application to lower-

hybrid current-drive experiments is not straightforward. In fact, in
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toroidal discharges the decay time of the current is too long to

change the total current during the rf pulse. As a result, a drop in

the loop voltage, and so in the dc electric field, is observed. In

spite of this, parallels between our work and experiments (YAMAMOTO et

al., 1980; OHKUBO et al, 1981; MAEKAWA et al., 1981) may be drawn:

1)

2)

While, consistently with the drop in the electric field, the
production of MeV-runaways is cut down (hard X-ray emission
suppressed) the observations strongly suggest, in agreement with
our model, that there exists an important population of runaway

electrons in the keV-range which carry the rf-driven current.

In agreement with the observations of OHKUBO et al. (1981), we have
found two different operating regimes depending on the source
strength. For a weak source we expect a linear change in the run-
runaways production rate and the experiments display a change in
the loop voltage, soft X-ray and electron cyclotron emission which
is linear in rf power. For a strong source, a saturation of these
signals is observed, which agrees with the saturating runaway pro-
duction rate calculated here. The critical power density (cf.equa-
tion(26)) that separates the two regimes may be written in physical
units as P = 2.3.101" (vo/wpe) (n;3)3/? Tiey EXP ((E/Ec) (vy*/4)

- v;2/2) (W/m®), where ny3 is normalized to 10'3 cm-3, Tkey is
normalized to 1 keV and vy is the minimum parallel phase velocity
of the driven waves in units of the electron thermal velocity. The
application of this formula for the parameters of the experiment

gives a value of 5 kW/m3 which is an order below the experimental
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data of 40 kW/m3. This discrepancy may be attributed to the
inhomogenities which affect the density, temperature and parallel
refractive index (BONOLI and OTT, 1981) in the experiment, and

perhaps to the existence of a reflected power,
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APPENDIX: Asymptotic expressions of F

The distribution function F that is given by -equation (20)

reduces to simple explicit expressions in both limits of small and

high velocities. We have

Flo) = exp(E4- ¥) (A | dedenp(3'-£ 2)
_ ’ (A1)
‘§ d2 A(&T,,U;,Z) %‘up(z{z-f%})

1. In the small velocity limit, v < vy <K vq, the two integrals of
equation (A1) may be easily evaluated. The first one yields, after the
change of variable y = (v2 -vg2)/(2vp), ved exp (1/(4E)). The

second one is identified as the integral I, (v,,v,) calculated in

equation (22). Therefore,

Flo) = ep(E8- 0) [ AR 0 exp( )

- SIT exp(g) exp(- & ()]

or by using equations (21) and (23) for A

-
s
|

5
Q
-
—
m
i<
|
ol

(A2)
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2. In the high velocity limit, v » Vo > Ve, the term which is
proportional to S disappears and the remaining integral is evaluated

by means of the change of variable as before. One obtains

F(U):%(l+%%‘t)=%(l+%t) . (A3)
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FIGURE CAPTION

Shape of the driven spectrum in the linear regime. The strong source
regime would be represented by a horizontal line. We display two cases
of source strength S = 5 10-® (dashed line) and $ = 1.5 10~’ (dotted
line), for the same electric field E o= 1 %, angle 65 = 45% and
collision frequency vy = 1.34 10-%. Note that with increasing v the
spectrum becomes independent of S. The solid line indicates the
approximation used to calculate the stimulated pitch-angle diffusion

by the anomalous Doppler effect (cf. section 4.2).
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