266 research outputs found

    Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments

    Full text link
    Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments are analyzed. The theoretical basis is stated, and a Monte Carlo procedure to perform the calculation is presented. The results are compared with experimental data. The importance of the accuracy in the description of the experimental parameters is tested, and the implications of the present results on the data analysis procedures is examined.Comment: 19 pages, 8 figure

    Uncertainties In Direct Neutron Capture Calculations Due To Nuclear Structure Models

    Get PDF
    The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. For spherical nuclei close to the dripline the statistical model (Hauser-Feshbach) approach is not applicable and direct contributions may dominate the cross sections. For neutron-rich, even-even Sn targets, we compare the resulting neutron capture cross sections when consistently taking the input for the direct capture calculations from three different microscopic models. The results underline the sensitivity of cross sections calculated in the direct model to nuclear structure models which can lead to high uncertainties when lacking experimental information.Comment: 4 pages, using espcrc1.sty, Proc. Intl. Conf. "Nuclei in the Cosmos IV", Univ. Notre Dame 1996, Nucl. Phys. A, in press. A postscript version can also be obtained from http://quasar.physik.unibas.ch/research.htm

    Test of nuclear level density inputs for Hauser-Feshbach model calculations

    Full text link
    The energy spectra of neutrons, protons, and alpha-particles have been measured from the d+59Co and 3He+58Fe reactions leading to the same compound nucleus, 61$Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculations using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parameterizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as 60Ni,60Co, and 57Fe

    Parity-Violating Interaction Effects in the np System

    Full text link
    We investigate parity-violating observables in the np system, including the longitudinal asymmetry and neutron-spin rotation in np elastic scattering, the photon asymmetry in np radiative capture, and the asymmetries in deuteron photo-disintegration d(gamma,n)p in the threshold region and electro-disintegration d(e,e`)np in quasi-elastic kinematics. To have an estimate of the model dependence for the various predictions, a number of different, latest-generation strong-interaction potentials--Argonne v18, Bonn 2000, and Nijmegen I--are used in combination with a weak-interaction potential consisting of pi-, rho-, and omega-meson exchanges--the model known as DDH. The complete bound and scattering problems in the presence of parity-conserving, including electromagnetic, and parity-violating potentials is solved in both configuration and momentum space. The issue of electromagnetic current conservation is examined carefully. We find large cancellations between the asymmetries induced by the parity-violating interactions and those arising from the associated pion-exchange currents. In the np capture, the model dependence is nevertheless quite small, because of constraints arising through the Siegert evaluation of the relevant E1 matrix elements. In quasi-elastic electron scattering these processes are found to be insignificant compared to the asymmetry produced by gamma-Z interference on individual nucleons.Comment: 65 pages, 26 figures, submitted to PR

    Direct radiative capture of p-wave neutrons

    Get PDF
    The neutron direct radiative capture (DRC) process is investigated, highlighting the role of incident p-wave neutrons. A set of calculations is shown for the 12-C(n,gamma) process at incoming neutron energies up to 500 keV, a crucial region for astrophysics. The cross section for neutron capture leading to loosely bound s, p and d orbits of 13-C is well reproduced by the DRC model demonstrating the feasibility of using this reaction channel to study the properties of nuclear wave functions on and outside the nuclear surface. A sensitivity analysis of the results on the neutron-nucleus interaction is performed for incident s- as well as p-waves. It turned out that the DRC cross section for p-wave neutrons is insensitive to this interaction, contrary to the case of incident s-wave neutrons. PACS number(s): 25.40Lw,21.10Gv,23.40.HcComment: 16 pages, REVTeX file, PostScript file, .dvi fil

    Spin measurements for 147Sm+n resonances: Further evidence for non-statistical effects

    Full text link
    We have determined the spins J of resonances in the 147Sm(n,gamma) reaction by measuring multiplicities of gamma-ray cascades following neutron capture. Using this technique, we were able to determine J values for all but 14 of the 140 known resonances below En = 1 keV, including 41 firm J assignments for resonances whose spins previously were either unknown or tentative. These new spin assignments, together with previously determined resonance parameters, allowed us to extract separate level spacings and neutron strength functions for J = 3 and 4 resonances. Furthermore, several statistical test of the data indicate that very few resonances of either spin have been missed below En = 700eV. Because a non-statistical effect recently was reported near En = 350 eV from an analysis of 147Sm(n,alpha) data, we divided the data into two regions; 0 < En < 350 eV and 350 < En < 700 eV. Using neutron widths from a previous measurement and published techniques for correcting for missed resonances and for testing whether data are consistent with a Porter-Thomas distribution, we found that the reduced-neutron-width distribution for resonances below 350 eV is consistent with the expected Porter-Thomas distribution. On the other hand, we found that reduced-neutron-width data in the 350 < En < 700 eV region are inconsistent with a Porter-Thomas distribution, but in good agreement with a chi-squared distribution having two or more degrees of freedom. We discuss possible explanations for these observed non-statistical effects and their possible relation to similar effects previously observed in other nuclides.Comment: 40 pages, 13 figures, accepted by Phys. Rev.

    Gamma-ray strength function and pygmy resonance in rare earth nuclei

    Full text link
    The gamma-ray strength function for gamma energies in the 1-7 MeV region has been measured for 161,162-Dy and 171,172-Yb using the (3-He,alpha gamma) reaction. Various models are tested against the observed gamma-ray strength functions. The best description is based on the Kadmenskii, Markushev and Furman E1 model with constant temperature and the Lorentzian M1 model. A gamma-ray bump observed at E_gamma=3 MeV is interpreted as the so-called pygmy resonance, which has also been observed previously in (n,gamma) experiments. The parameters for this resonance have been determined and compared to the available systematics.Comment: 11 pages, including 4 figures and 2 table

    Evaluation of the mean intensity of the P-odd mixing of nuclear compound states

    Full text link
    A temperature version of the shell-optical-model approach for describing the low-energy compound-to-compound transitions induced by external single-particle fields is given. The approach is applied to evaluate the mean intensity of the P-odd mixing of nuclear compound states. Unified description for the mixing and electromagnetic transitions allows one to evaluate the mean intensity without the use of free parameters. The valence-mechanism contribution to the mentioned intensity is also evaluated. Calculation results are compared with the data deduced from cross sections of relevant neutron-induced reactions.Comment: LaTeX, 10 page

    Non-resonant direct p- and d-wave neutron capture by 12C

    Get PDF
    Discrete gamma-rays from the neutron capture state of 13C to its low-lying bound states have been measured using pulsed neutrons at En = 550 keV. The partial capture cross sections have been determined to be 1.7+/-0.5, 24.2+/-1.0, 2.0+/-0.4 and 1.0+/-0.4 microb for the ground (1/2-), first (1/2+), second (3/2-) and third (5/2+) excited states, respectively. From a comparison with theoretical predictions based on the non-resonant direct radiative capture mechanism, we could determine the spectroscopic factor for the 1/2+ state to be 0.80 +/- 0.04, free from neutron-nucleus interaction ambiguities in the continuum. In addition we have detected the contribution of the non-resonant d-wave capture component in the partial cross sections for transitions leading to the 1/2- and 3/2- states. While the s-wave capture dominates at En < 100 keV, the d-wave component turns out to be very important at higher energies. From the present investigation the 12C(n,gamma)13C reaction rate is obtained for temperatures in the range 10E+7 - 10E+10 K.Comment: Accepted for publication in Phys. Rev. C. - 16 pages + 8 figure
    corecore