1,015 research outputs found
Psychometric evaluation of a visual analog scale for the assessment of anxiety
<p>Abstract</p> <p>Background</p> <p>Fast-acting medications for the management of anxiety are important to patients and society. Measuring early onset, however, requires a sensitive and clinically responsive tool. This study evaluates the psychometric properties of a patient-reported Global Anxiety - Visual Analog Scale (GA-VAS).</p> <p>Methods</p> <p>Data from a double-blind, randomized, placebo-controlled study of lorazepam and paroxetine in patients with Generalized Anxiety Disorder were analyzed to assess the reliability, validity, responsiveness, and utility of the GA-VAS. The GA-VAS was completed at clinic visits and at home during the first week of treatment. Targeted psychometric analyses—test-retest reliabilities, validity correlations, responsiveness statistics, and minimum important differences—were conducted.</p> <p>Results</p> <p>The GA-VAS correlates well with other anxiety measures, at Week 4, <it>r </it>= 0.60 (<it>p </it>< 0.0001) with the Hamilton Rating Scale for Anxiety and <it>r </it>= 0.74 (<it>p </it>< 0.0001) with the Hospital Anxiety and Depression Scale - Anxiety subscale. In terms of convergent and divergent validity, the GA-VAS correlated -0.54 (<it>p </it>< 0.0001), -0.48 (<it>p </it>< 0.0001), and -0.68 (<it>p </it>< 0.0001) with the SF-36 Emotional Role, Social Function, and Mental Health subscales, respectively, but correlated much lower with the SF-36 physical functioning subscales. Preliminary minimum important difference estimates cluster between 10 and 15 mm.</p> <p>Conclusions</p> <p>The GA-VAS is capable of validly and effectively capturing a reduction in anxiety as quickly as 24 hours post-dose.</p
Recommended from our members
In-situ nanoSIMS measurements of isotopic hotspots in the CM2 meteorite Cold Bokkeveld
Previous studies have identified iso-topic hotspots in insoluble organic matter (IOM) from carbonaceous chondrites. The origins and formation mechanisms of these hotspots and the host IOM are a matter of ongoing debate. For example, it is not clear whether D and 15N enrichments in IOM formed within a common organic precursor in cold interstellar environments or due to irradiation of organic material in the early Solar System. It is also unclear what effect parent body processes would have had with regard to the alteration of meteoritic IOM. In order to address these issues, more recent studies have attempted to make in-situ measurements of isotopic anomalies in IOM. In this study we present in-situ NanoSIMS isotopic analyses of material within a sample of the CM2 meteorite Cold Bokkeveld, comparing the distribution of hotspots and bulk H, C and N isotopic composition in the rims and interiors of altered chondrules
Explant analysis and implant registries are both needed to further improve patient safety
In the early days of total joint replacement, implant fracture, material problems and wear presented major problems for the long-term success of the operation. Today, failures directly related to the implant comprise only 2–3% of the reasons for revision surgeries, which is a result of the material and design improvements in combination with the standardization of pre-clinical testing methods and the post-market surveillance required by the legal regulation. Arthroplasty registers are very effective tools to document the long-term clinical performance of implants and implantation techniques such as fixation methods in combination with patient characteristics. Revisions due to implant failure are initially not reflected by the registries due to their small number. Explant analysis including patient, clinical and imaging documentation is crucial to identify failure mechanisms early enough to prevent massive failures detectable in the registries. In the past, early reaction was not always successful, since explant analysis studies have either been performed late or the results did not trigger preventive measures until clinical failures affected a substantial number of patients. The identification of implant-related problems is only possible if all failures are reported and related to the number of implantations. A system that analyses all explants from revisions attributed to implant failure is mandatory to reduce failures, allowing improvement of risk assessment in the regulatory proces
Authigenic minerals reflect microbial control on pore waters in a ferruginous analogue
Ferruginous conditions prevailed in the oceans through much of Earth’s history. However, minerals recording these conditions remain difficult to interpret in terms of biogeochemical processes prior to lithification. In Lake Towuti, Indonesia, ferruginous sediments are deposited under anoxic sulfate-poor conditions similar to the Proterozoic oceans, allowing the study of mineralogical (trans)formations during microbial diagenesis.
Comprehensive pore water geochemistry, high resolution geochemical core profiles, and electron microscopy of authigenic minerals revealed in situ formation of magnetite, millerite, and abundant siderite and vivianite along a 100 m long sequence. Framboidal magnetites represent primary pelagic precipitates, whereas millerite, a sulfide mineral often overlooked under sulfate-poor conditions, shows acicular aggregates entangled with siderite and vivianite resulting from saturated pore waters and continuous growth during burial. These phases act as biosignatures of microbial iron and sulfate reduction, fermentation and methanogenesis, processes clearly traceable in pore water profiles.
Variability in metal and organic substrates attests to environment driven processes, differentially sustaining microbial processes along the stratigraphy. Geochemical profiles resulting from microbial activity over 200 kyr after deposition provide constraints on the depth and age of mineral formation within ferruginous records
Authigenic minerals reflect microbial control on pore waters in a ferruginous analogue
Ferruginous conditions prevailed in the oceans through much of Earth's history. However, minerals recording these conditions remain difficult to interpret in terms of biogeochemical processes prior to lithification. In Lake Towuti, Indonesia, ferruginous sediments are deposited under anoxic sulfate-poor conditions similar to the Proterozoic oceans, allowing the study of mineralogical (trans)formations during microbial diagenesis. Comprehensive pore water geochemistry, high resolution geochemical core profiles, and electron microscopy of authigenic minerals revealed in situ formation of magnetite, millerite, and abundant siderite and vivianite along a 100 m long sequence. Framboidal magnetites represent primary pelagic precipitates, whereas millerite, a sulfide mineral often overlooked under sulfate-poor conditions, shows acicular aggregates entangled with siderite and vivianite resulting from saturated pore waters and continuous growth during burial. These phases act as biosignatures of microbial iron and sulfate reduction, fermentation and methanogenesis, processes clearly traceable in pore water profiles. Variability in metal and organic substrates attests to environment driven processes, differentially sustaining microbial processes along the stratigraphy. Geochemical profiles resulting from microbial activity over 200 kyr after deposition provide constraints on the depth and age of mineral formation within ferruginous records
Tests of Transfer Reaction Determinations of Astrophysical S-Factors
The reaction has been used to determine
asymptotic normalization coefficients for transitions to the ground and first
excited states of . The coefficients provide the normalization for
the tails of the overlap functions for and allow us
to calculate the S-factors for at astrophysical
energies. The calculated S-factors are compared to measurements and found to be
in very good agreement. This provides the first test of this indirect method to
determine astrophysical direct capture rates using transfer reactions. In
addition, our results yield S(0) for capture to the ground and first excited
states in , without the uncertainty associated with extrapolation from
higher energies.Comment: 6 pages, 2 figure
Elastic scattering and breakup of 17^F at 10 MeV/nucleon
Angular distributions of fluorine and oxygen produced from 170 MeV 17^F
incident on 208^Pb were measured. The elastic scattering data are in good
agreement with optical model calculations using a double-folding potential and
parameters similar to those obtained from 16^O+208^Pb. A large yield of oxygen
was observed near \theta_lab=36 deg. It is reproduced fairly well by a
calculation of the (17^F,16^O) breakup, which is dominated by one-proton
stripping reactions. The discrepancy between our previous coincidence
measurement and theoretical predictions was resolved by including core
absorption in the present calculation.Comment: 9 pages, 5 figure
Recommended from our members
Investigation of the in-vitro loading on an artificial spinal disk prosthesis
Spinal diseases imposes considerable burden to both patients and society. In recent years, much surgical efforts have been made in advancing the treatment of neck and back pain. Of particular prominence is the increasing clinical acceptance and use of intervertebral artificial disk prosthesis for the treatment of discogenic back pain. Despite this increased use of such disks, their in-vivo monitoring remains rudimentary. In an effort to develop an intelligent artificial spinal disk where the in-vivo loading of the spine can by studied for the first time an experimental set up has been created in order to initially study the in-vitro loading on an artificial disc prosthesis. Eight strain gauges and two piezoresistive sensors were used and placed suitably in the artificial disk prosthesis. The results from the in-vitro loading showed linear relationship between loading and the outputs from the sensors with good repeatability and less hysteresis
Sex differences in the morphological failure patterns following hip resurfacing arthroplasty
<p>Abstract</p> <p>Background</p> <p>Metal-on-metal hybrid hip resurfacing arthroplasty (with a cementless acetabular component and a cemented femoral component) is offered as an alternative to traditional total hip arthroplasty for the young and active adult with advanced osteoarthritis. Although it has been suggested that women are less appropriate candidates for metal-on-metal arthroplasty, the mechanisms of prosthesis failure has not been fully explained. While specific failure patterns, particularly osteonecrosis and delayed type hypersensitivity reactions have been suggested to be specifically linked to the sex of the patient, we wished to examine the potential influence of sex, clinical diagnosis, age of the patient and the size of the femoral component on morphological failure patterns in a large cohort of retrieved specimens following aseptic failure of hip resurfacing arthroplasty.</p> <p>Methods</p> <p>Femoral remnants retrieved from 173 hips with known patient's sex were morphologically analyzed for the cause of failure. The results were compared with the control group of the remaining 31 failures from patients of unknown sex. The odds ratios (OR) and 95% confidence intervals (CI) of the following morphologically defined variables were calculated using logistic regression analysis: periprosthetic fractures (n = 133), osteonecrosis (n = 151), the presence of excessive intraosseous lymphocyte infiltration (n = 11), and interface hyperosteoidosis (n = 30). Logistic regression analysis was performed both unadjusted and after adjustment for sex, age, the size of the femoral component, and preoperative clinical diagnosis.</p> <p>Results</p> <p>Femoral remnants from female patients had a smaller OR for fracture (adjusted OR: 0.29, 95% CI 0.11, 0.80, <it>P </it>for difference = 0.02) and for the presence of osteonecrosis (adjusted OR: 0.16, 95% CI 0.04, 0.63, <it>P </it>for difference = 0.01). However, women had a higher OR for both the presence of excessive intraosseous lymphocyte infiltration (adjusted OR: 10.22, 95% CI 0.79, 132.57, <it>P </it>for difference = 0.08) and interface hyperosteoidosis (adjusted OR: 4.19, 95% CI 1.14, 15.38, <it>P </it>for difference = 0.03).</p> <p>Conclusions</p> <p>Within the limitations of this study, we demonstrated substantial sex differences in distinct failure patterns of metal-on-metal hip resurfacing. Recognition of pathogenically distinct failure modes will enable further stratification of risk factors for certain failure mechanisms and thus affect future therapeutic options for selected patient groups.</p
- …