2,610 research outputs found

    Chiral Symmetry and N*(1440) -> N pi pi Decay

    Full text link
    The N*(1440) -> N pi pi decay is studied by making use of the chiral reduction formula. This formula suggests a scalar-isoscalar pion-baryon contact interaction which is absent in the recent study of Hern{\'a}ndez et al. The contact interaction is introduced into their model, and is found to be necessary for the simultaneous description of g_{RN pi pi} and the pi-pi and pi-N invariant mass distributions.Comment: 12 page

    Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers

    Get PDF
    We studied the photoelectron spectra generated by an intense few-cycle infrared laser pulse. By focusing on the angular distributions of the back rescattered high energy photoelectrons, we show that accurate differential elastic scattering cross sections of the target ion by free electrons can be extracted. Since the incident direction and the energy of the free electrons can be easily changed by manipulating the laser's polarization, intensity, and wavelength, these extracted elastic scattering cross sections, in combination with more advanced inversion algorithms, may be used to reconstruct the effective single-scattering potential of the molecule, thus opening up the possibility of using few-cycle infrared lasers as powerful table-top tools for imaging chemical and biological transformations, with the desired unprecedented temporal and spatial resolutions.Comment: 16 pages, 6 figure

    Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra

    Get PDF
    A comprehensive quantitative rescattering (QRS) theory for describing the production of high-energy photoelectrons generated by intense laser pulses is presented. According to the QRS, the momentum distributions of these electrons can be expressed as the product of a returning electron wave packet with the elastic differential cross sections (DCS) between free electrons with the target ion. We show that the returning electron wave packets are determined mostly by the lasers only, and can be obtained from the strong field approximation. The validity of the QRS model is carefully examined by checking against accurate results from the solution of the time-dependent Schr\"odinger equation for atomic targets within the single active electron approximation. We further show that experimental photoelectron spectra for a wide range of laser intensity and wavelength can be explained by the QRS theory, and that the DCS between electrons and target ions can be extracted from experimental photoelectron spectra. By generalizing the QRS theory to molecular targets, we discuss how few-cycle infrared lasers offer a promising tool for dynamic chemical imaging with temporal resolution of a few femtoseconds.Comment: 19 pages, 19 figure

    Using a Generalized Linear Mixed Model Framework to Account for Spatial Variability in a Comparison of Orchard Sprayer Efficacy

    Get PDF
    Uniform application of pesticides in vineyard and orchard systems can be difficult to achieve due to variability in the density and structure of the crop canopy. Depending on the equipment used and environmental conditions, applications can result in poor spray coverage, spray drift, and wasted spray which, in turn, are manifested as a combination of poor pesticide efficacy, economic losses and potential environmental problems for the grower. A study was therefore designed and carried out to test new sprayer equipment aimed at addressing these issues. Statistically, the study presented a unique replicated three dimensional spatial design which captured response variability (coverage) both within and across trees in an orchard setting. Application of a generalized linear mixed model framework allowed comparison of sprayer designs in terms of their application efficiencies while accounting for the intra- and inter-tree correlation of the coverage response. Examples demonstrating various models and their associated correlation structures are given and the resulting interpretations discussed

    SPATIAL STATISTICAL ANALYSIS FOR THE AREA-OF-INFLUENCE EXPERIMENTS

    Get PDF
    The area-of-influence (AOI) approach to quantifying crop/weed competition involves measuring the effect of individual weed plants on crop growth and yield at specified distances away from the weed plant. AOI experiments are often analyzed using classical statistical techniques based on the assumption that successive observations on crop response are independent in spite of their distribution in space. However, as the distance varies along the row, the competitive ability will vary spatially so that observations located nearby are expected to be more alike than those separated by large distances. Analyses based on spatial dependencies will therefore provide a more comprehensive understanding of factors influencing crop yield reductions. A spatial statistical approach for analyzing AOI experiments is presented and applications are demonstrated using data from a field experiment in South Central Idaho designed to determine the interference of three broadleaf weed species in sugarbeets

    Hadronic Masses and Regge Trajectories

    Get PDF
    A comprehensive phenomenological analysis of experimental data and some theoretical models is presented here (for mesons) to critically discuss how Regge trajectory parameters depend on flavor. Through analytic continuation of physical trajectories (obtained from resonance data) into the space like region, we derive the suppression factor for heavy flavor production. The case of our D Regge exchange, both for D and Λc\Lambda_c production, is considered in some detail. Good agreement with data is reached confirming that indeed the slopes of heavier flavors decrease. This result suggests that the confinement potential has a substantial dependence on the quark masses. In a simple non-relativistic model, constrained to produce linear Regge trajectories, it is shown that a linear quark mass dependence is required (in the confinement part of the potential) in order for the slope to decrease in the appropriate way.Comment: 19 pages, 9 Figures, IV Table

    Simulation of guiding of multiply charged projectiles through insulating capillaries

    Full text link
    Recent experiments have demonstrated that highly charged ions can be guided through insulating nanocapillaries along the direction of the capillary axis for a surprisingly wide range of injection angles. Even more surprisingly, the transmitted particles remain predominantly in their initial charge state, thus opening the pathway to the construction of novel ion-optical elements without electric feedthroughs. We present a theoretical treatment of this self-organized guiding process. We develop a classical trajectory transport theory that relates the microscopic charge-up with macroscopic material properties. Transmission coefficients, angular spread of transmitted particles, and discharge characteristics of the target are investigated. Partial agreement with experiment is found

    Electrical Detection and Magnetic-Field Control of Spin States in Phosphorus-Doped Silicon

    Full text link
    Electron paramagnetic resonance of ensembles of phosphorus donors in silicon has been detected electrically with externally applied magnetic fields lower than 200 G. Because the spin Hamiltonian was dominated by the contact hyperfine term rather than by the Zeeman terms at such low magnetic fields, superposition states α∣↑↓>+β∣↓↑> \alpha{}| \uparrow \downarrow >+\beta{}| \downarrow \uparrow > and −β∣↑↓>+α∣↓↑>-\beta{}| \uparrow \downarrow > + \alpha{}| \downarrow \uparrow > were formed between phosphorus electron and nuclear spins, and electron paramagnetic resonance transitions between these superposition states and ∣↑↑>| \uparrow \uparrow > or ∣↓↓>| \downarrow \downarrow > states are observed clearly. A continuous change of α\alpha{} and β\beta{} with the magnetic field was observed with a behavior fully consistent with theory of phosphorus donors in silicon.Comment: 6 pages, 5 figure
    • …
    corecore