15 research outputs found

    Micromechanical study on the origin of fiber bridging under interlaminar and intralaminar mode I failure

    Get PDF
    Fiber reinforced polymers (FRPs) subjected to mode I fracture show important toughening due to the development of large scale bridging (LSB). Experimental studies of this phenomenon in unidirectional carbon/epoxy laminates using double cantilever beam specimens, demonstrate important differences in R-curve response for inter- and intralaminar fracture. Post fracture observation of composite’s cross-section pointed out dissimilar fiber bundle size and shape, as the main origin of their differences. In the present paper, representative volume elements with the composite’s constituents, based on the actual material microstructure, and homogenized 2D finite element models were developed to study the effects of microstructure on the first stage of damage leading to LSB development in carbon/epoxy composites under mode I fracture. The differences between inter- and intralaminar fracture were investigated along with the influence of fiber dispersion and the presence of interply and intraply resin-rich zones. The numerical simulations captured different microcrack morphologies for inter- and intralaminar fracture, supporting the experimental observations, while parametric studies showed the influence of the microstructure in the formation of LSB. In particular, fiber dispersion within a ply and resin rich zone between plies play significant roles in mode I fracture and can be used to control toughening mechanisms in FRPs

    Interface characterization in fiber-reinforced polymer-matrix composites

    Get PDF
    A novel methodology is presented and applied to measure the shear interface strength of fiber-reinforced polymers. The strategy is based in fiber push-in tests carried out on the central fiber of highly-packed fiber clusters with hexagonal symmetry, and it is supported by a detailed finite element analysis of the push-in test to account for the influence of hygrothermal residual stresses, fiber constraint and fiber anisotropy on the interface strength. Examples of application are presented to determine the shear interface strength in carbon and glass fiber composites reinforced with either thermoset or thermoplastic matrices. In addition, the influence of the environment (either dry or wet conditions) on the interface strength in C/epoxy composites is demonstrated.This investigation was supported by the Ministerio de Ciencia e InnovaciĂłn of Spain through the Grant MAT2012-37552, by the Comunidad de Madrid through the program DIMMAT (P2013/MIT2775), and by the European Community's Seventh Framework Programme FP7/2007-2013 under Grant Agreement 213371 (MAAXIMUS, www.maaximus.eu). In addition, the support of Airbus through the project SIMSCREEN ("Simulation for Screening Properties of Materials") is gratefully acknowledged

    Multi-scale energy homogenization for 3D printed microstructures with a Diritchlet boundary condition relaxation under plastic deformation

    Full text link
    The present work is a proof of concept of the capabilities of paralellization in the calculation of metamaterials in a non-linear regime. In this work we subdivided the bulk material into subregions where the mechanical properties are homogenized energetically. We demonstrate that the calculation can be subdivided to save RAM memory and fit the local non-linear behaviour of the metamaterial. This methodology has the potentiality to be implemented in the parallelization of those calculations, where the right estimation of the energy of the local processes at every step is important.Comment: 5 pages, 1 figur

    Special-purpose elements to impose Periodic Boundary Conditions for multiscale computational homogenization of composite materials with the explicit Finite Element Method

    Get PDF
    A novel methodology is presented to introduce Periodic Boundary Conditions (PBC) on periodic Representative Volume Elements (RVE) in Finite Element (FE) solvers based on dynamic explicit time integration. This implementation aims at overcoming the difficulties of the explicit FE method in dealing with standard PBC. The proposed approach is based on the implementation of a user-defined element, named a Periodic Boundary Condition Element (PBCE), that enforces the periodicity between periodic nodes through a spring-mass-dashpot system. The methodology is demonstrated in the multiscale simulation of composite materials. Two showcases are presented: one at the scale of computational micromechanics, and another one at the level of computational mesomechanics. The first case demonstrates that the proposed PBCE allows the homogenization of composite ply properties through the explicit FE method with increased efficiency and similar reliability with respect to the equivalent implicit simulations with traditional PBC. The second case demonstrates that the PBCE coupled with Periodic Laminate Elements (PLE) can effectively be applied to the computational homogenization of elastic and strength properties of entire laminates taking into account highly nonlinear effects. Both cases motivate the application of the methodology in multiscale virtual testing in support of the building-block certification of composite materials.The research leading to this publication was supported by the European Community FP7 Programme through project MAAXIMUS (grant agreement 213371) and by the Spanish Ministry of Industry, Economy and Competitiveness (MINECO) through project HYDTCOMP (grant MAT2015-69491-C03-02). C.S. Lopes also acknowledges the support of MINECO through the RamĂłn y Cajal fellowship (grant RYC-2013-14271). The authors are grateful to Prof. Ignacio Romero for his helpful insights on this research

    Multiscale modelling of thermoplastic woven fabric composites: From micromechanics to mesomechanics

    Get PDF
    The mechanical properties of woven composites can be predicted by using a multiscale modelling approach. The starting point to its application is the microscale (the level of fibres, matrix and interfaces), that allows the computation of the homogenised behaviour of the yarn. The aim of this work was to predict the yarn-level behaviour of a thermoplastic-based woven composite in order to allow the formulation of a representative constitutive model that can be used to predict ply properties at the mesoscale. To accomplish this purpose, an in situ characterisation of the microconstituents was carried out. This served to generate inputs for three different representative volume element (RVE) models that allowed predicting the yarn longitudinal, transverse and shear responses. These mechanical characteristics allowed the determination of homogenised yarn constitutive behaviour which was found to be characterised by significant non-linearity until failure, specially in transverse and shear directions.The research leading to the developments described received funding of the project ADVANSEAT; a collaborative R&D project led by Grupo AntolĂ­n, and partially supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO). C.S. Lopes also acknowledges the support of MINECO through the RamĂłn y Cajal fellowship (RYC-2013-14271)

    Refinement of screening for familial pancreatic cancer

    Get PDF
    Conclusions It appears safe to start screening for PDAC in IAR of non-CDKN2a FPC families at the age of 50 years. MRI-based screening supplemented by EUS at baseline and every 3rd year or when changes in MRI occur appears to be efficient.Surgical oncolog

    Effective properties of centro-symmetric micropolar composites with non-uniform imperfect contact conditions

    No full text
    In this work, the homogenization theory is addressed within the framework of three-dimensional linear micropolar composite materials with centro-symmetric constituents and non-uniform imperfect interface conditions. The imperfect contact conditions are modeled like a generalization of the spring model, where tractions and coupled stresses are continuous, but displacements and microrotations are discontinuous across the interface. The jumps in displacement and microrotation components are proportional to the interface traction and coupled stress components in terms of a partition of different spring-factor-type interface parameters, respectively. The two-scale asymptotic homogenization method (AHM) is developed, through series expansions for displacements and micro-rotations, to find the analytical statement of the local problems on the periodic cell and the corresponding effective coefficients. In particular, centro-symmetric multi-laminated micropolar composites with non-uniform imperfect contact conditions are studied, and their corresponding effective properties are explicitly declared. Numerical results show the effects of the interface partition lengths, the non-uniform imperfection values, and the constituent’s fraction volumes on the effective properties of centro-symmetric bi-laminated composite with isotropic constituent materials. We also analyze and discuss the effective behaviors illustrated in the results. In general, the effective properties are always affected by a non-uniform imperfect interface, and they are bounded between those achieved when the contact conditions are perfect and imperfect uniform. The reported formulas and data may be helpful as benchmarks for checking other experimental and numerical results
    corecore