37 research outputs found

    A reference high-pressure CH<sub>4</sub> adsorption isotherm for zeolite Y: results of an interlaboratory study

    Get PDF
    This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess methane adsorption isotherms on NIST Reference Material RM 8850 (Zeolite Y), at 25 °C up to 7.5 MPa. Twenty laboratories participated in the study and contributed over one-hundred adsorption isotherms of methane on Zeolite Y. From these data, an empirical reference equation was determined, along with a 95% uncertainty interval (Uk=2). By requiring participants to replicate a high-pressure reference isotherm for carbon dioxide adsorption on NIST Reference Material RM 8852 (ZSM-5), this interlaboratory study also demonstrated the usefulness of reference isotherms in evaluating the performance of high-pressure adsorption experiments

    Effect of nanoscale curvature sign and bundle structure on supercritical H2 and CH4 adsorptivity of single wall carbon nanotube

    Get PDF
    The adsorptivities of supercritical CH(4) and H(2) of the external and internal tube walls of single wall carbon nanotube (SWCNT) were determined. The internal tube wall of the negative curvature showed the higher adsorptivities for supercritical CH(4) and H(2) than the external tube wall of the positive curvature due to their interaction potential difference. Fine SWCNT bundles were prepared by the capillary force-aided drying treatment using toluene or methanol in order to produce the interstitial pore spaces having the strongest interaction potential for CH(4) or H(2); the bundled SWCNT showed the highest adsorptivity for supercritical CH(4) and H(2). It was clearly shown that these nanostructures of SWCNTs are crucial for supercritical gas adsorptivity.ArticleADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY. 17(3):643-651 (2011)journal articl

    High-Throughput and Time-Resolved Energy-Dispersive X-Ray Diffraction (EDXRD) Study of the Formation of CAU−1−(OH)2CAU-1-(OH)_2: Microwave and conventional heating

    No full text
    Aluminium dihydroxyterephthalate [Al(8)(OH)(4)(OCH(3))(8)(BDC(OH)(2))(6)]⋅x H(2)O (denoted CAU-1-(OH)(2)) was synthesized under solvothermal conditions and characterized by X-ray powder diffraction, IR spectroscopy, sorption measurements, as well as thermogravimetric and elemental analysis. CAU-1-(OH)(2) is isoreticular to CAU-1 and its pores are lined with OH groups. It is stable under ambient conditions and in water, and it exhibits permanent porosity and two types of cavities with effective diameters of approximately 1 and 0.45 nm. The crystallization of CAU-1-(OH)(2) was studied by in situ energy-dispersive X-ray diffraction (EDXRD) experiments in the 120-145 °C temperature range. Two heating methods-conventional and microwave-were investigated. The latter leads to shorter induction periods as well as shorter reaction times. Whereas CAU-1-(OH)(2) is formed at all investigated temperatures using conventional heating, it is only observed below 130 °C using microwave heating. The calculation of the activation energy of the crystallization of CAU-1-(OH)(2) exhibits similar values for microwave and conventional synthesis

    Discovery and Validation of Immunological Biomarkers in Milk for Health Monitoring of Dairy Cows - Results from a Multiomics Approach

    No full text
    &lt;p&gt;At onset of milk production and in early lactation highly producing dairy cows are most susceptible for inflammatory diseases due to functional suppression of immune cells. Intensive supervision of the animals is essential and implementation of new technologies to on-farm routines will be the next step to provide automation and improvement of herd health monitoring programs. Objective of our study was to identify and validate immunological biomarkers in milk that indicate extra-mammary inflammatory diseases to characterize the general health status of highly-producing dairy cows. In total 89 healthy and 75 diseased animals (German Holstein cows) were included. Diseases were distinguished by either systemic (extra-mammary) occurrence or those affecting the mammary gland (mastitis) and further classified by their severity. For protein biomarker discovery we used a top-down approach to narrow down a broad range of secreted gene products of the milk cell transcriptome (microarray) and proteome to a few promising candidates which were validated using real-time PCR and ELISA. The most promising biomarker candidates were statistically evaluated. Receiver operating characteristic analysis revealed haptoglobin, secretory component, lactoferrin and vascular endothelial growth factor showing the highest discriminatory capability for diseased vs. healthy cows. Values for sensitivity at a specificity of 94% were 82% for haptoglobin, 59% for secretory component, 55% for lactoferrin and 67% for vascular endothelial growth factor. Statistical evaluation by multinomial logistic regression and k-nearest neighbor method confirmed haptoglobin as the best single-use biomarker. In combination with secretory component or lactoferrin an increase in overall sensitivity or specificity, depending on the classification method, could be achieved. The application of the validated health biomarkers in combination with an easy high-throughput detection system would offer a solution to adapt dairy herd management to changing requirements on animal welfare, farming efficiency, milk supply and food safety in modern agriculture.&lt;/p&gt
    corecore