9,647 research outputs found

    Same Bang, Less Buck: A Cost-benefit Analysis of South Carolina’s Youth Courts

    Get PDF
    While youth courts experience tremendous growth nationwide, their utility is largely unproven, particularly in state-level contexts. This study conducted a cost-benefit analysis of South Carolina\u27s youth courts. The study found that while youth courts and family courts produced comparable recidivism rates, youth courts were substantially less expensive for comparable adjudications. The relative efficiency of youth courts, however, was neither monolithic nor guaranteed. Individual youth courts displayed considerable variation and some youth courts were not as efficient as their traditional family court counterparts. Inefficient youth courts had low caseloads, typically resulting from inefficient or immature referral systems and a reliance on borrowed courthouse resources

    Occurrence of Two Species of Old World Bees, \u3ci\u3eAnthidium Manicatum\u3c/i\u3e and \u3ci\u3eA. Oblongatum\u3c/i\u3e (Apoidea: Megachilidae), in Northern Ohio and Southern Michigan

    Get PDF
    Anthidium manicatum and A. oblongatum are two European bees species that have recently established themselves in North America. Anthidium manicatum has previously been documented in New York and Ontario, Canada, and A. oblongatum has been documented in New York, New Jersey, Maryland, and eastern Pennsylvania. We surveyed a number of sites in Ohio, Michigan, and Indiana for these species in 2000 and 2001, and found both bee species to have extended their ranges into northern Ohio, and A. manicatum to have moved into southern Michigan. We present a key identifying the four Anthidium species now known from northeastern North America

    CELL TO CELL INTERACTION IN THE IMMUNE RESPONSE : I. HEMOLYSIN-FORMING CELLS IN NEONATALLY THYMECTOMIZED MICE RECONSTITUTED WITH THYMUS OR THORACIC DUCT LYMPHOCYTES

    Get PDF
    An injection of viable thymus or thoracic duct lymphocytes was absolutely essential to enable a normal or near-normal 19S liemolysin-forming cell response in the spleens of neonatally thymectomized mice challenged with sheep erythrocytes. Syngeneic thymus lymphocytes were as effective as thoracic duct lymphocytes in this system and allogeneic or semiallogeneic cells could also reconstitute their hosts. No significant elevation of the response was achieved by giving either bone marrow cells, irradiated thymus or thoracic duct cells, thymus extracts or yeast. Spleen cells from reconstituted mice were exposed to anti-H2 sera directed against either the donor of the thymus or thoracic duct cells, or against the neonatally thymectomized host. Only isoantisera directed against the host could significantly reduce the number of hemolysin-forming cells present in the spleen cell suspensions. It is concluded that these antibody-forming cells are derived, not from the inoculated thymus or thoracic duct lymphocytes, but from the host. Thoracic duct cells from donors specifically immunologically tolerant of sheep erythrocytes had a markedly reduced restorative capacity in neonatally thymectomized recipients challenged with sheep erythrocytes. These results have suggested that there are cell types, in thymus or thoracic duct lymph, with capacities to react specifically with antigen and to induce the differentiation, to antibody-forming cells, of hemolysin-forming cell precursors derived from a separate cell line present in the neonatally thymectomized hosts

    CELL TO CELL INTERACTION IN THE IMMUNE RESPONSE : V. TARGET CELLS FOR TOLERANCE INDUCTION

    Get PDF
    Collaboration between thymus-derived lymphocytes, and nonthymus-derived antibody-forming cell precursors occurs during the immune response of mice to sheep erythrocytes (SRBC). The aim of the experiments reported here was to attempt to induce tolerance in each of the two cell populations to determine which cell type dictates the specificity of the response. Adult mice were rendered specifically tolerant to SRBC by treatment with one large dose of SRBC followed by cyclophosphamide. Attempts to restore to normal their anti-SRBC response by injecting lymphoid cells from various sources were unsuccessful. A slight increase in the response was, however, obtained in recipients of thymus or thoracic duct lymphocytes and a more substantial increase in recipients of spleen cells or of a mixture of thymus or thoracic duct cells and normal marrow or spleen cells from thymectomized donors. Thymus cells from tolerant mice were as effective as thymus cells from normal or cyclophosphamide-treated controls in enabling neonatally thymectomized recipients to respond to SRBC and in collaborating with normal marrow cells to allow a response to SRBC in irradiated mice. Tolerance was thus not achieved at the level of thelymphocyte population within the thymus, perhaps because of insufficient penetration of the thymus by the antigens concerned. By contrast, thoracic duct lymphocytes from tolerant mice failed to restore to normal the response of neonatally thymectomized recipients to SRBC. Tolerance is thus a property that can be linked specifically to thymus-derived cells as they exist in the mobile pool of recirculating lymphocytes outside the thymus. Thymus-derived cells are thus considered capable of recognizing and specifically reacting with antigenic determinants. Marrow cells from tolerant mice were as effective as marrow cells from cyclophosphamide-treated or normal controls in collaborating with normal thymus cells to allow a response to SRBC in irradiated recipients. When a mixture of thymus or thoracic duct cells and lymph node cells was given to irradiated mice, the response to SRBC was essentially the same whether the lymph node cells were derived from tolerant donors or from thymectomized irradiated, marrow-protected donors. Attempts to induce tolerance to SRBC in adult thymectomized, irradiated mice 3–4 wk after marrow protection, by treatment with SRBC and cyclophosphamide, were unsuccessful: after injection of thoracic duct cells, a vigorous response to SRBC occurred. The magnitude of the response was the same whether or not thymus cells had been given prior to the tolerization regime. The various experimental designs have thus failed to demonstrate specific tolerance in the nonthymus-derived lymphocyte population. Several alternative possibilities were discussed. Perhaps such a population does not contain cells capable of dictating the specificity of the response. This was considered unlikely. Alternatively, tolerance may have been achieved but soon masked by a rapid, thymus-independent, differentiation of marrow-derived lymphoid stem cells. On the other hand, tolerance may not have occurred simply because the induction of tolerance, like the induction of antibody formation, requires the collaboration of thymus-derived cells. Finally, tolerance in the nonthymus-derived cell population may never be achieved because the SRBC-cyclophosphamide regime specifically eliminates thymus-derived cells leaving the antibody-forming cell precursors intact but unable to react with antigen as there are no thymus-derived cells with which to interact

    CELL TO CELL INTERACTION IN THE IMMUNE RESPONSE : II. THE SOURCE OF HEMOLYSIN-FORMING CELLS IN IRRADIATED MICE GIVEN BONE MARROW AND THYMUS OR THORACIC DUCT LYMPHOCYTES

    Get PDF
    The number of discrete hemolytic foci and of hemolysin-forming cells arising in the spleens of heavily irradiated mice given sheep erythrocytes and either syngeneic thymus or bone marrow was not significantly greater than that detected in controls given antigen alone. Thoracic duct cells injected with sheep erythrocytes significantly increased the number of hemolytic foci and 10 million cells gave rise to over 1000 hemolysin-forming cells per spleen. A synergistic effect was observed when syngeneic thoracic duct cells were mixed with syngeneic marrow cells: the number of hemolysin-forming cells produced in this case was far greater than could be accounted for by summating the activities of either cell population given alone. The number of hemolytic foci produced by the mixed population was not however greater than that produced by an equivalent number of thoracic duct cells given without bone marrow. Thymus cells given together with syngeneic bone marrow enabled irradiated mice to produce hemolysin-forming cells but were much less effective than the same number of thoracic duct cells. Likewise syngeneic thymus cells were not as effective as thoracic duct cells in enabling thymectomized irradiated bone marrow-protected hosts to produce hemolysin-forming cells in response to sheep erythrocytes. Irradiated recipients of semiallogeneic thoracic duct cells produced hemolysin-forming cells of donor-type as shown by the use of anti-H2 sera. The identity of the hemolysin-forming cells in the spleens of irradiated mice receiving a mixed inoculum of semiallogeneic thoracic duct cells and syngeneic marrow was not determined because no synergistic effect was obtained in these recipients in contrast to the results in the syngeneic situation. Thymectomized irradiated mice protected with bone marrow for a period of 2 wk and injected with semiallogeneic thoracic duct cells together with sheep erythrocytes did however produce a far greater number of hemolysin-forming cells than irradiated mice receiving the same number of thoracic duct cells without bone marrow. Anti-H2 sera revealed that the antibody-forming cells arising in the spleens of these thymectomized irradiated hosts were derived, not from the injected thoracic duct cells, but from bone marrow. It is concluded that thoracic duct lymph contains a mixture of cell types: some are hemolysin-forming cell precursors and others are antigen-reactive cells which can interact with antigen and initiate the differentiation of hemolysin-forming cell precursors to antibody-forming cells. Bone marrow contains only precursors of hemolysin-forming cells and thymus contains only antigen-reactive cells but in a proportion that is far less than in thoracic duct lymph

    The Importance of Background in the Detection and Identification of Gas Plumes Using Emissive Infrared Hyperspectral Sensing

    Get PDF
    Using a Fourier transform infrared field spectrometer, spectral infrared radiance measurements were made of several generated gas plumes against both a uniform sky and terrestrial background. Background temperature, spectral complexity, and physical homogeneity each influenced the success of emissive infrared spectral sensing technology in detecting and identifying the presence of a gas plume and its component constituents. As expected, high temperature contrast and uniform backgrounds provided the best conditions for detectability and diagnostic identification. This report will summarize some of SITAC’s findings concerning plume detectability, including the importance of plume cooling, plumes in emission and absorption, the effects of optical thickness, and the effects of condensing plumes on gas detection

    Vector competence experiments with Rocio virus and three mosquito species from the epidemic zone in Brazil

    Get PDF
    First-generation progeny of field-collected Psorophora ferox, Aedes scapularis, and Aedes serratus from the Rocio encephalitis epidemic zone in S.Paulo State, Brazil, were tested for vector competency in the laboratory. Psorophora ferox and Ae. scapularis are susceptible to per os infection with Rocio virus and can transmit the virus by bite following a suitable incubation period. Oral ID50S for the two species (10(4.1) and 10(4.3) Vero cell plaque forming units, respectively) did not differ significantly. Infection rates in Ae. serratus never exceeded 36%, and, consequently, an ID50 could not be calculated for this species. It is unlikely that Ae. serratus is an epidemiologically important vector of Rocio virus. The utility of an in vitro feeding technique for demonstrating virus transmission by infected mosquitoes and difficulties encountered in working with uncolonized progeny of field-collected mosquitoes are discussed.Em condições de laboratório procedeu-se a ensaios visando testar a capacidade vetora para o virus Rocio, da primeira geração de Psorophora ferox, Aedes scapularis e Aedes serratus obtida a partir de especimens coletados na região epidêmica do Estado de São Paulo, Brasil. Psorophora ferox e Aedes scapularis revelaram-se suscetíveis à infecção por via oral e capazes de transmitir o vírus mediante a picada após período adequado de incubação. Para as duas espécies, as ID50 orais não diferiram significativamente. Em Ae. serratus as taxas de infecção nunca ultrapassaram os 36,0% o que impossibilitou o cálculo da ID50 para essa espécie. É improvável que Ae. serratus seja vetor epidemiológicamente importante do vírus Rocio. Discute-se a utilidade da técnica de alimentação "in vitro" para demonstrar a transmissão por mosquitos infectados, e também as dificuldades encontradas ao trabalhar com gerações não colonizadas originárias de especimens coletados no campo

    Heights of one- and two-sided congruence lattices of semigroups

    Full text link
    The height of a poset PP is the supremum of the cardinalities of chains in PP. The exact formula for the height of the subgroup lattice of the symmetric group Sn\mathcal{S}_n is known, as is an accurate asymptotic formula for the height of the subsemigroup lattice of the full transformation monoid Tn\mathcal{T}_n. Motivated by the related question of determining the heights of the lattices of left- and right congruences of Tn\mathcal{T}_n, we develop a general method for computing the heights of lattices of both one- and two-sided congruences for semigroups. We apply this theory to obtain exact height formulae for several monoids of transformations, matrices and partitions, including: the full transformation monoid Tn\mathcal{T}_n, the partial transformation monoid PTn\mathcal{PT}_n, the symmetric inverse monoid In\mathcal{I}_n, the monoid of order-preserving transformations On\mathcal{O}_n, the full matrix monoid M(n,q)\mathcal{M}(n,q), the partition monoid Pn\mathcal{P}_n, the Brauer monoid Bn\mathcal{B}_n and the Temperley-Lieb monoid TLn\mathcal{TL}_n
    corecore