718 research outputs found

    Bayesian inversion for finite fault earthquake source models I—theory and algorithm

    Get PDF
    The estimation of finite fault earthquake source models is an inherently underdetermined problem: there is no unique solution to the inverse problem of determining the rupture history at depth as a function of time and space when our data are limited to observations at the Earth’s surface. Bayesian methods allow us to determine the set of all plausible source model parameters that are consistent with the observations, our a priori assumptions about the physics of the earthquake source and wave propagation, and models for the observation errors and the errors due to the limitations in our forward model. Because our inversion approach does not require inverting any matrices other than covariance matrices, we can restrict our ensemble of solutions to only those models that are physically defensible while avoiding the need to restrict our class of models based on considerations of numerical invertibility. We only use prior information that is consistent with the physics of the problem rather than some artefice (such as smoothing) needed to produce a unique optimal model estimate. Bayesian inference can also be used to estimate model-dependent and internally consistent effective errors due to shortcomings in the forward model or data interpretation, such as poor Green’s functions or extraneous signals recorded by our instruments. Until recently, Bayesian techniques have been of limited utility for earthquake source inversions because they are computationally intractable for problems with as many free parameters as typically used in kinematic finite fault models. Our algorithm, called cascading adaptive transitional metropolis in parallel (CATMIP), allows sampling of high-dimensional problems in a parallel computing framework. CATMIP combines the Metropolis algorithm with elements of simulated annealing and genetic algorithms to dynamically optimize the algorithm’s efficiency as it runs. The algorithm is a generic Bayesian Markov Chain Monte Carlo sampler; it works independently of the model design, a priori constraints and data under consideration, and so can be used for a wide variety of scientific problems. We compare CATMIP’s efficiency relative to several existing sampling algorithms and then present synthetic performance tests of finite fault earthquake rupture models computed using CATMIP

    Binding of Herpes Simplex Virus Type-1 Virions Leads to the Induction of Intracellular Signalling in the Absence of Virus Entry

    Get PDF
    The envelope of HSV-1 contains a number of glycoproteins, four of which are essential for virus entry. Virus particles lacking gB, gD, gH or gL are entry-defective, although these viruses retain the ability to bind to the plasma membrane via the remaining glycoproteins. Soluble forms of gD have been shown to trigger the nuclear translocation of the NF-κB transcriptional complex in addition to stimulating the production of Type I interferon. By taking advantage of the entry-defective phenotype of glycoprotein-deficient HSV-1 virus particles, the results presented here show that binding of virions to cellular receptors on the plasma membrane is sufficient to stimulate a change in cellular gene expression. Preliminary microarray studies, validated by quantitative real-time PCR, identified the differential expression of cellular genes associated with the NF-κB, PI3K/Akt, Jak/Stat and related Jak/Src pathways by virions lacking gB or gH but not gD. Gene induction occurred at a few particles per cell, corresponding to physiological conditions during primary infection. Reporter assay studies determined that NF-κB transcriptional activity is stimulated within an hour of HSV-1 binding, peaks between two and three hours post-binding and declines to background levels by five hours after induction. The immediate, transient nature of these signalling events suggests that HSV-1 glycoproteins, particularly gD, may alter the cellular environment pre-entry so as to condition the cell for viral replication

    Development of climate profiles for reclamation

    Get PDF
    April 1981.Includes bibliographical references (page 58)

    Climate profile for the McCallum Emria study area

    Get PDF
    March 1981.Includes bibliographical references (page 64)

    Bayesian inversion for finite fault earthquake source models – II: the 2011 great Tohoku-oki, Japan earthquake

    Get PDF
    We present a fully Bayesian inversion of kinematic rupture parameters for the 2011 M_w 9 Tohoku-oki, Japan earthquake. Albeit computationally expensive, this approach to kinematic source modelling has the advantage of producing an ensemble of slip models that are consistent with physical a priori constraints, realistic data uncertainties, and realistic but simplistic uncertainties in the physics of the kinematic forward model, all without being biased by non-physical regularization constraints. Combining 1 Hz kinematic GPS, static GPS offsets, seafloor geodesy and near-field and far-field tsunami data into a massively parallel Monte Carlo simulation, we construct an ensemble of samples of the posterior probability density function describing the evolution of fault rupture. We find that most of the slip is concentrated in a depth range of 10–20 km from the trench, and that slip decreases towards the trench with significant displacements at the toe of wedge occurring in just a small region. Estimates of static stress drop and rupture velocity are ambiguous. Due to the spatial compactness of the fault rupture, the duration of the entire rupture was less than approximately 150 s

    The 2013 M_w 7.7 Balochistan Earthquake: Seismic Potential of an Accretionary Wedge

    Get PDF
    Great earthquakes rarely occur within active accretionary prisms, despite the intense long‐term deformation associated with the formation of these geologic structures. This paucity of earthquakes is often attributed to partitioning of deformation across multiple structures as well as aseismic deformation within and at the base of the prism (Davis et al., 1983). We use teleseismic data and satellite optical and radar imaging of the 2013 M_w 7.7 earthquake that occurred on the southeastern edge of the Makran plate boundary zone to study this unexpected earthquake. We first compute a multiple point‐source solution from W‐phase waveforms to estimate fault geometry and rupture duration and timing. We then derive the distribution of subsurface fault slip from geodetic coseismic offsets. We sample for the slip posterior probability density function using a Bayesian approach, including a full description of the data covariance and accounting for errors in the elastic structure of the crust. The rupture nucleated on a subvertical segment, branching out of the Chaman fault system, and grew into a major earthquake along a 50° north‐dipping thrust fault with significant along‐strike curvature. Fault slip propagated at an average speed of 3.0  km/s for about 180 km and is concentrated in the top 10 km with no displacement on the underlying décollement. This earthquake does not exhibit significant slip deficit near the surface, nor is there significant segmentation of the rupture. We propose that complex interaction between the subduction accommodating the Arabia–Eurasia convergence to the south and the Ornach Nal fault plate boundary between India and Eurasia resulted in the significant strain gradient observed prior to this earthquake. Convergence in this region is accommodated both along the subduction megathrust and as internal deformation of the accretionary wedge

    Predictors of mortality in connective tissue disease-associated pulmonary arterial hypertension: a cohort study

    Get PDF
    Extent: 9p.Introduction: Pulmonary arterial hypertension (PAH) is a major cause of mortality in connective tissue disease (CTD). We sought to quantify survival and determine factors predictive of mortality in a cohort of patients with CTD-associated PAH (CTD-PAH) in the current era of advanced PAH therapy. Methods: Patients with right heart catheter proven CTD-PAH were recruited from six specialised PAH treatment centres across Australia and followed prospectively. Using survival methods including Cox proportional hazards regression, we modelled for all-cause mortality. Independent variables included demographic, clinical and hemodynamic data. Results: Among 117 patients (104 (94.9%) with systemic sclerosis), during 2.6 ± 1.8 (mean ± SD) years of follow-up from PAH diagnosis, there were 32 (27.4%) deaths. One-, two- and three-year survivals were 94%, 89% and 73%, respectively. In multiple regression analysis, higher mean right atrial pressure (mRAP) at diagnosis (hazard ratio (HR) = 1.13, 95% CI: 1.04 to 1.24, P = 0.007), lower baseline six-minute walk distance (HR = 0.64, 95% CI: 0.43 to 0.97, P = 0.04), higher baseline World Health Organization functional class (HR = 3.42, 95% CI: 1.25 to 9.36, P = 0.04) and presence of a pericardial effusion (HR = 3.39, 95% CI: 1.07 to 10.68, P = 0.04) were predictive of mortality. Warfarin (HR = 0.20, 95% CI: 0.05 to 0.78, P = 0.02) and combination PAH therapy (HR = 0.20, 95% CI: 0.05 to 0.83, P = 0.03) were protective. Conclusions: In this cohort of CTD-PAH patients, three-year survival was 73%. Independent therapeutic predictors of survival included warfarin and combination PAH therapy. Our findings suggest that anticoagulation and combination PAH therapy may improve survival in CTD-PAH. This observation merits further evaluation in randomised controlled trials.Gene-Siew Ngian, Wendy Stevens, David Prior, Eli Gabbay, Janet Roddy, Ai Tran, Robert Minson, Catherine Hill, Ken Chow, Joanne Sahhar, Susanna Proudman and Mandana Nikpou

    Trigonometric Regressive Spectral Analysis Reliably Maps Dynamic Changes in Baroreflex Sensitivity and Autonomic Tone: The Effect of Gender and Age

    Get PDF
    BACKGROUND: The assessment of baroreflex sensitivity (BRS) has emerged as prognostic tool in cardiology. Although available computer-assisted methods, measuring spontaneous fluctuations of heart rate and blood pressure in the time and frequency domain are easily applicable, they do not allow for quantification of BRS during cardiovascular adaption processes. This, however, seems an essential criterion for clinical application. We evaluated a novel algorithm based on trigonometric regression regarding its ability to map dynamic changes in BRS and autonomic tone during cardiovascular provocation in relation to gender and age. METHODOLOGY/PRINCIPAL FINDINGS: We continuously recorded systemic arterial pressure, electrocardiogram and respiration in 23 young subjects (25+/-2 years) and 22 middle-aged subjects (56+/-4 years) during cardiovascular autonomic testing (metronomic breathing, Valsalva manoeuvre, head-up tilt). Baroreflex- and spectral analysis was performed using the algorithm of trigonometric regressive spectral analysis. There was an age-related decline in spontaneous BRS and high frequency oscillations of RR intervals. Changes in autonomic tone evoked by cardiovascular provocation were observed as shifts in the ratio of low to high frequency oscillations of RR intervals and blood pressure. Respiration at 0.1 Hz elicited an increase in BRS while head-up tilt and Valsalva manoeuvre resulted in a downregulation of BRS. The extent of autonomic adaption was in general more pronounced in young individuals and declined stronger with age in women than in men. CONCLUSIONS/SIGNIFICANCE: The trigonometric regressive spectral analysis reliably maps age- and gender-related differences in baroreflex- and autonomic function and is able to describe adaption processes of baroreceptor circuit during cardiovascular stimulation. Hence, this novel algorithm may be a useful screening tool to detect abnormalities in cardiovascular adaption processes even when resting values appear to be normal
    corecore