188 research outputs found

    Microwave-Based Stroke Diagnosis Making Global Prehospital Thrombolytic Treatment Possible

    Get PDF
    Here, we present two different brain diagnostic devices based on microwave technology and the associated two first proof-of-principle measurements that show that the systems can differentiate hemorrhagic from ischemic stroke in acute stroke patients, as well as differentiate hemorrhagic patients from healthy volunteers. The system was based on microwave scattering measurements with an antenna system worn on the head. Measurement data were analyzed with a machine-learning algorithm that is based on training using data from patients with a known condition. Computer tomography images were used as reference. The detection methodology was evaluated with the leave-one-out validation method combined with a Monte Carlo-based bootstrap step. The clinical motivation for this project is that ischemic stroke patients may receive acute thrombolytic treatment at hospitals, dramatically reducing or abolishing symptoms. A microwave system is suitable for prehospital use, and therefore has the potential to allow significantly earlier diagnosis and treatment than today

    Interplay of NH4+ and BH4- reorientational dynamics in NH4BH4

    Get PDF
    The reorientational dynamics of ammonium borohydride (NH4BH4) was studied using quasielastic neutron scattering in the temperature interval from 10 to 240 K, which covers both the dynamically ordered and disordered polymorphs of NH4BH4. In the low-temperature (50 K) ordered polymorph of NH4BH4, analysis of the quasielastic neutron scattering data reveals that no reorientational dynamics is present within the probed timescale region of 0.1 to 100 ps. In the high-temperature (50 K) disordered polymorph, the analysis establishes the onset of NH4+ and BH4- dynamics at around 50 and 125 K, respectively. The relaxation time at 150 K for NH4+ is approximately 1 ps, while around 100 ps for BH4- . The NH4+ dynamics at temperatures below 125 K is associated with preferential tetrahedral tumbling motions, where each of the hydrogen atoms in the NH4+ tetrahedron can visit any of the four hydrogen sites, however, reorientations around a specific axis are more frequently occurring (C-2 or C3). At higher temperatures, the analysis does not exclude a possible evolution of the NH4+ dynamics from tetrahedral tumbling to either cubic tumbling, where the hydrogen atoms can visit any of the eight positions corresponding to the corners of a cube, or isotropic rotational diffusion, where the hydrogen atoms can visit any location on the surface of a sphere. The BH4- dynamics can be described as cubic tumbling. The difference in reorientational dynamics between the two ions is related to the difference of the local environment where the dynamically much slower BH4- anion imposes a noncubic environment on the NH4+ cation

    High spectral efficiency superchannel transmission using a soliton microcomb

    Get PDF
    Optical communication systems have come through five orders of magnitude improvement in data rate over the last three decades. The increased demand in data traffic and the limited optoelectronic component bandwidths have led to state-of-the-art systems employing hundreds of separate lasers in each transmitter. Given the limited optical amplifier bandwidths, focus is now shifting to maximize the spectral efficiency, SE. However, the frequency jitter from neighbouring lasers results in uncertainties of the exact channel wavelength, requiring large guardbands to avoid catastrophic channel overlap. Optical frequency combs with optimal line spacings (typically around 10-50 GHz) can overcome these limitations and maximize the SE. Recent developments in microresonator-based soliton frequency combs (hereafter microcombs) promise a compact, power efficient multi-wavelength and phase-locked light source for optical communications. Here we demonstrate a microcomb-based communication link achieving state-of-the-art spectral efficiency that has previously only been possible with bulk-optics systems. Compared to previous microcomb works in optical communications, our microcomb features a narrow line spacing of 22.1 GHz. In addition, it provides a four order-of-magnitude more stable line spacing compared to free-running lasers. The optical signal-to-noise ratio (OSNR) is sufficient for information encoding using state-of-the-art high-order modulation formats. This enables us to demonstrate transmission of a 12 Tb/s superchannel over distances ranging from a single 82 km span with an SE exceeding 10 bits/s/Hz, to 2000 km with an SE higher than 6 bits/s/Hz. These results demonstrate that microcombs can attain the SE that will spearhead future optical networks

    Interplay between the Reorientational Dynamics of the B3H8- Anion and the Structure in KB3H8

    Get PDF
    The structure and reorientational dynamics of KB3H8 were studied by using quasielastic and inelastic neutron scattering, Raman spectroscopy, first-principles calculations, differential scanning calorimetry, and in situ synchrotron radiation powder X-ray diffraction. The results reveal the existence of a previously unknown polymorph in between the alpha\u27- and beta-polymorphs. Furthermore, it was found that the [B3H8](-) anion undergoes different reorientational motions in the three polymorphs alpha, alpha\u27, and beta. In alpha-KB3H8, the [B3H8](-) anion performs 3-fold rotations in the plane created by the three boron atoms, which changes to a 2-fold rotation around the C-2 symmetry axis of the [B3H8](-) anion upon transitioning to alpha\u27-KB3H8. After transitioning to beta-KB3H8, the [B3H8](-) anion performs 4-fold rotations in the plane created by the three boron atoms, which indicates that the local structure of beta-KB3H8 deviates from the global cubic NaCl-type structure. The results also indicate that the high reorientational mobility of the [B3H8](-) anion facilitates the K+ cation conductivity, since the 2-orders-of-magnitude increase in the anion reorientational mobility observed between 297 and 311 K coincides with a large increase in K+ conductivity

    High spectral efficiency coherent superchannel transmission with soliton microcombs

    Get PDF
    Spectral efficiency (SE) is one of the key metrics for optical communication networks. An important building block for its maximization are optical superchannels, channels that are composed of several subchannels with an aggregate bandwidth larger than the bandwidth of the detector electronics. Superchannels which are routed through the network as a single entity, together with flex-grid routing, allow to more efficiently utilize available bandwidth and eliminate the guard-bands between channels, thus increasing spectral efficiency. In contrast to traditional wavelength division multiplexing (WDM) channels, subchannel spacing and thus superchannel SE is governed by the linewidth and stability of the frequency spacing of the transmitter lasers. Integrated optical frequency combs, particulary the parametrically generated so-called microcombs, which provide optical lines on a fixed frequency grid are a promising solution for low power superchannel laser sources that allow to minimize the SE loss from suboptimal channel spacing. However, it is extremely challenging to realize micro-combs with sufficient line power, coherence and line spacing that is compatible with electronic bandwidths. Because the line-spacing generated by most devices is above 40 GHz, demonstrations often rely on additional electro-optic frequency shifter or divider stages to avoid digital-to-analog-converter (DAC) performance degradation when operating at high symbol rates. Here we demonstrate a 50-line superchannel from a single 22 GHz line spacing soliton microcomb. We demonstrate 12 Tb/s throughput with > 10 bits/s/Hz SE efficiency after 80 km transmission and 8 Tb/s throughput (SE > 6 bits/s/Hz) after 2100 km, proving the feasibility and benefits of generating high signal quality, broadband waveforms directly from the output of a micro-scale device with a symbol rate close to the comb repetition rate

    High spectral efficiency coherent superchannel transmission with soliton microcombs

    Get PDF
    Spectral efficiency (SE) is one of the key metrics for optical communication networks. An important building block for its maximization are optical superchannels, channels that are composed of several subchannels with an aggregate bandwidth larger than the bandwidth of the detector electronics. Superchannels which are routed through the network as a single entity, together with flex-grid routing, allow to more efficiently utilize available bandwidth and eliminate the guard-bands between channels, thus increasing spectral efficiency. In contrast to traditional wavelength division multiplexing (WDM) channels, subchannel spacing and thus superchannel SE is governed by the linewidth and stability of the frequency spacing of the transmitter lasers. Integrated optical frequency combs, particulary the parametrically generated so-called microcombs, which provide optical lines on a fixed frequency grid are a promising solution for low power superchannel laser sources that allow to minimize the SE loss from suboptimal channel spacing. However, it is extremely challenging to realize micro-combs with sufficient line power, coherence and line spacing that is compatible with electronic bandwidths. Because the line-spacing generated by most devices is above 40 GHz, demonstrations often rely on additional electro-optic frequency shifter or divider stages to avoid digital-to-analog-converter (DAC) performance degradation when operating at high symbol rates. Here we demonstrate a 50-line superchannel from a single 22 GHz line spacing soliton microcomb. We demonstrate 12 Tb/s throughput with > 10 bits/s/Hz SE efficiency after 80 km transmission and 8 Tb/s throughput (SE > 6 bits/s/Hz) after 2100 km, proving the feasibility and benefits of generating high signal quality, broadband waveforms directly from the output of a micro-scale device with a symbol rate close to the comb repetition rate
    • …
    corecore