122 research outputs found

    Pnictogens Allotropy and Phase Transformation during van der Waals Growth

    Full text link
    Pnictogens have multiple allotropic forms resulting from their ns2 np3 valence electronic configuration, making them the only elemental materials to crystallize in layered van der Waals (vdW) and quasi-vdW structures throughout the group. Light group VA elements are found in the layered orthorhombic A17 phase such as black phosphorus, and can transition to the layered rhombohedral A7 phase at high pressure. On the other hand, bulk heavier elements are only stable in the A7 phase. Herein, we demonstrate that these two phases not only co-exist during the vdW growth of antimony on weakly interacting surfaces, but also undertake a spontaneous transformation from the A17 phase to the thermodynamically stable A7 phase. This metastability of the A17 phase is revealed by real-time studies unraveling its thickness-driven transition to the A7 phase and the concomitant evolution of its electronic properties. At a critical thickness of ~4 nm, A17 antimony undergoes a diffusionless shuffle transition from AB to AA stacked alpha-antimonene followed by a gradual relaxation to the A7 bulk-like phase. Furthermore, the electronic structure of this intermediate phase is found to be determined by surface self-passivation and the associated competition between A7- and A17-like bonding in the bulk. These results highlight the critical role of the atomic structure and interfacial interactions in shaping the stability and electronic characteristics of vdW layered materials, thus enabling a new degree of freedom to engineer their properties using scalable processes

    Smoking Is Associated with Shortened Airway Cilia

    Get PDF
    BACKGROUND:Whereas cilia damage and reduced cilia beat frequency have been implicated as causative of reduced mucociliary clearance in smokers, theoretically mucociliary clearance could also be affected by cilia length. Based on models of mucociliary clearance predicting that cilia length must exceed the 6-7 microm airway surface fluid depth to generate force in the mucus layer, we hypothesized that cilia height may be decreased in airway epithelium of normal smokers compared to nonsmokers. METHODOLOGY/PRINCIPAL FINDINGS:Cilia length in normal nonsmokers and smokers was evaluated in aldehyde-fixed, paraffin-embedded endobronchial biopsies, and air-dried and hydrated samples were brushed from human airway epithelium via fiberoptic bronchoscopy. In 28 endobronchial biopsies, healthy smoker cilia length was reduced by 15% compared to nonsmokers (p<0.05). In 39 air-dried samples of airway epithelial cells, smoker cilia length was reduced by 13% compared to nonsmokers (p<0.0001). Analysis of the length of individual, detached cilia in 27 samples showed that smoker cilia length was reduced by 9% compared to nonsmokers (p<0.05). Finally, in 16 fully hydrated, unfixed samples, smoker cilia length was reduced 7% compared to nonsmokers (p<0.05). Using genome-wide analysis of airway epithelial gene expression we identified 6 cilia-related genes whose expression levels were significantly reduced in healthy smokers compared to healthy nonsmokers. CONCLUSIONS/SIGNIFICANCE:Models predict that a reduction in cilia length would reduce mucociliary clearance, suggesting that smoking-associated shorter airway epithelial cilia play a significant role in the pathogenesis of smoking-induced lung disease

    Hallmarks of the Mott-Metal Crossover in the Hole-Doped Pseudospin-1/2 Mott Insulator Sr\u3csub\u3e2\u3c/sub\u3eIrO\u3csub\u3e4\u3c/sub\u3e

    Get PDF
    The physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4. The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit multiple iconic low-energy features previously observed in doped cuprates—pseudogaps, Fermi arcs and marginal-Fermi-liquid-like electronic scattering rates. We suggest these signatures are most likely an integral part of the material’s proximity to the Mott state, rather than from many of the most claimed mechanisms, including preformed electron pairing, quantum criticality or density-wave formation

    PPAR? Downregulation by TGF in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis

    Get PDF
    The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)- dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a ''TGF-ß responsive gene signature'' in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis. © 2010 Wei et al

    Photo-physics and electronic structure of lateral graphene/MoS2 and metal/MoS2 junctions

    Full text link
    Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially resolved photocurrent microscopy to demonstrate electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS2) interface. A 10x larger photocurrent is extracted at the EG/MoS2 interface when compared to metal (Ti/Au) /MoS2 interface. This is supported by semi-local density-functional theory (DFT), which predicts the Schottky barrier at the EG/MoS2 interface to be ~2x lower than Ti/MoS2. We provide a direct visualization of a 2D material Schottky barrier through combination of angle resolved photoemission spectroscopy with spatial resolution selected to be ~300 nm (nano-ARPES) and DFT calculations. A bending of ~500 meV over a length scale of ~2-3 micrometer in the valence band maximum of MoS2 is observed via nano-ARPES. We explicate a correlation between experimental demonstration and theoretical predictions of barriers at graphene/TMD interfaces. Spatially resolved photocurrent mapping allows for directly visualizing the uniformity of built-in electric fields at heterostructure interfaces, providing a guide for microscopic engineering of charge transport across heterointerfaces. This simple probe-based technique also speaks directly to the 2D synthesis community to elucidate electronic uniformity at domain boundaries alongside morphological uniformity over large areas

    Giant Phonon-induced Conductance in Scanning Tunneling Spectroscopy of Gate-tunable Graphene

    Full text link
    The honeycomb lattice of graphene is a unique two-dimensional (2D) system where the quantum mechanics of electrons is equivalent to that of relativistic Dirac fermions. Novel nanometer-scale behavior in this material, including electronic scattering, spin-based phenomena, and collective excitations, is predicted to be sensitive to charge carrier density. In order to probe local, carrier-density dependent properties in graphene we have performed atomically-resolved scanning tunneling spectroscopy measurements on mechanically cleaved graphene flake devices equipped with tunable back-gate electrodes. We observe an unexpected gap-like feature in the graphene tunneling spectrum which remains pinned to the Fermi level (E_F) regardless of graphene electron density. This gap is found to arise from a suppression of electronic tunneling to graphene states near E_F and a simultaneous giant enhancement of electronic tunneling at higher energies due to a phonon-mediated inelastic channel. Phonons thus act as a "floodgate" that controls the flow of tunneling electrons in graphene. This work reveals important new tunneling processes in gate-tunable graphitic layers

    Characterization and Generation of Male Courtship Song in Cotesia congregata (Hymenoptera: Braconidae)

    Get PDF
    Background Male parasitic wasps attract females with a courtship song produced by rapid wing fanning. Songs have been described for several parasitic wasp species; however, beyond association with wing fanning, the mechanism of sound generation has not been examined. We characterized the male courtship song of Cotesia congregata (Hymenoptera: Braconidae) and investigated the biomechanics of sound production. Methods and Principal Findings Courtship songs were recorded using high-speed videography (2,000 fps) and audio recordings. The song consists of a long duration amplitude-modulated “buzz” followed by a series of pulsatile higher amplitude “boings,” each decaying into a terminal buzz followed by a short inter-boing pause while wings are stationary. Boings have higher amplitude and lower frequency than buzz components. The lower frequency of the boing sound is due to greater wing displacement. The power spectrum is a harmonic series dominated by wing repetition rate ~220 Hz, but the sound waveform indicates a higher frequency resonance ~5 kHz. Sound is not generated by the wings contacting each other, the substrate, or the abdomen. The abdomen is elevated during the first several wing cycles of the boing, but its position is unrelated to sound amplitude. Unlike most sounds generated by volume velocity, the boing is generated at the termination of the wing down stroke when displacement is maximal and wing velocity is zero. Calculation indicates a low Reynolds number of ~1000. Conclusions and Significance Acoustic pressure is proportional to velocity for typical sound sources. Our finding that the boing sound was generated at maximal wing displacement coincident with cessation of wing motion indicates that it is caused by acceleration of the wing tips, consistent with a dipole source. The low Reynolds number requires a high wing flap rate for flight and predisposes wings of small insects for sound production

    R1507, an Anti-Insulin-Like Growth Factor-1 Receptor (IGF-1R) Antibody, and EWS/FLI-1 siRNA in Ewing's Sarcoma: Convergence at the IGF/IGFR/Akt Axis

    Get PDF
    A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si) RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71) was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays). TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney) cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt

    Racial differences in pathways to care preceding first episode mania or psychosis: a historical cohort prodromal study

    Get PDF
    BackgroundThere is evidence suggesting racial disparities in diagnosis and treatment in bipolar disorder (BD) and schizophrenia (SZ). The purpose of this study is to compare psychiatric diagnoses and psychotropic use preceding a first episode of mania (FEM) or psychosis (FEP) in racially diverse patients.MethodsUsing a comprehensive medical records linkage system (Rochester Epidemiology Project, REP), we retrospectively identified individuals diagnosed with BD or SZ and a documented first episode of mania or psychosis. Illness trajectory before FEP/FEM were characterized as the time from first visit for a mental health complaint to incident case. Pathways to care and clinical events preceding FEP/FEM were compared based on subsequent incident case diagnosis (BD or SZ) and self-reported race (White vs. non-White).ResultsA total of 205 (FEM = 74; FEP = 131) incident cases were identified in the REP. Duration of psychiatric antecedents was significantly shorter in non-White patients, compared to White patients (2.2 ± 4.3 vs. 7.4 ± 6.6 years; p &lt; 0.001) with an older age at time of first visit for a mental health complaint (15.7 ± 6.3 vs. 11.1 ± 6.0 years; p = 0.005). There were no significant differences by race in FEM pathway to care or age of first seeking mental health. Overall non-White patients had lower rates of psychotropic use.ConclusionThese data are unable to ascertain reasons for shorter duration of psychiatric antecedents and later age of seeking care, and more broadly first age of initial symptom presentation. If symptoms are confirmed to be earlier than first time seeking care in both groups, it would be important to identify barriers that racial minorities face to access timely psychiatric care and optimize early intervention strategies
    corecore