32 research outputs found

    Time-dependent Internal DFT formalism and Kohn-Sham scheme

    Full text link
    We generalize to the time-dependent case the stationary Internal DFT / Kohn-Sham formalism presented in Ref. [14]. We prove that, in the time-dependent case, the internal properties of a self-bound system (as an atomic nuclei) are all defined by the internal one-body density and the initial state. We set-up a time-dependent Internal Kohn-Sham scheme as a practical way to compute the internal density. The main difference with the traditional DFT / Kohn-Sham formalism is the inclusion of the center-of-mass correlations in the functional.Comment: 13 pages. To be published in Phys. Rev.

    Polarizibilities as a test of localized approximations to the self-interaction correction

    Full text link
    We present applications of the recently introduced ``Generalized SIC-Slater'' scheme which provides a simple Self-Interaction Correction approximation in the framework of the Optimized Effective Potential. We focus on the computation of static polarizabilities which are known to constitute stringent tests for Density Functional Theory. We apply the new method to model H chains, but also to more realistic systems such as C4 (organic) chains, and less symmetrical systems such as a Na5 (metallic) cluster. Comparison is made with other SIC schemes, especially with the standard SIC-Slater one.Comment: 17 pages, 4 figures, 49 reference

    Open problems in nuclear density functional theory

    Full text link
    This note describes five subjects of some interest for the density functional theory in nuclear physics. These are, respectively, i) the need for concave functionals, ii) the nature of the Kohn-Sham potential for the radial density theory, iii) a proper implementation of a density functional for an "intrinsic" rotational density, iv) the possible existence of a potential driving the square root of the density, and v) the existence of many models where a density functional can be explicitly constructed.Comment: 10 page

    Time-dependent density-functional theory with self-interaction correction

    Full text link
    We discuss an extension of time-dependent density-functional theory by a self-interaction correction (SIC). A strictly variational formulation is given taking care of the necessary constraints. A manageable and transparent propagation scheme using two sets of wavefunctions is proposed and applied to laser excitation with subsequent ionization of a dimer molecule.Comment: 4 pages, 1 figur

    Improved Slater approximation to SIC-OEP

    Full text link
    We propose a simplification of the Optimized Effective Potential (OEP) applied to the Self Interaction Correction (SIC) scheme of Density Functional Theory (DFT). The new scheme fulfills several key formal properties and turns out to be both simple and accurate. We show examples of applications on model molecules in terms of observables known to be especially sensitive to details of the SIC-OEP approach.Comment: 3 figure

    The nuclear energy density functional formalism

    Full text link
    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a {\it Hamiltonian-based} picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g′,g]E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a {\it mathematically} meaningful fashion even if E[g′,g]E[g',g] does {\it not} derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making {\it any} reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a {\it physical} standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
    corecore