58 research outputs found

    Neurodevelopment of children exposed in utero to treatment of maternal malignancy

    Get PDF
    Cancer is the second most common cause of death during the reproductive years, complicating approximately 1/1000 pregnancies. The occurrence of cancer during gestation is likely to increase as a result of a woman's tendency to delay childbearing. Improved diagnostic techniques for malignancies increases detection of cancer during pregnancy. Malignant conditions during gestation are believed to be associated with an increase in poor perinatal and fetal outcomes that are often due to maternal treatment. Physicians should weigh the benefits of treatment against the risks of fetal exposure. To date, most reports have focused on morphologic observations made very close to the time of delivery with little data collected on children's long-term neurodevelopment following in utero exposure to malignancy and treatment. Because the brain differentiates throughout pregnancy and in early postnatal life, damage may occur even after first trimester exposure. The possible delayed effects of treatment on a child's neurological, intellectual and behavioural functioning have never been systematically evaluated. The goal of this report was to summarize all related issues into one review to facilitate both practitioners' and patients' access to known data on fetal risks and safety. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Antineoplastic Drugs as a Potential Risk Factor in Occupational Settings: Mechanisms of Action at the Cell Level, Genotoxic Effects, and Their Detection Using Different Biomarkers

    Get PDF
    U članku je prikazana osnovna podjela antineoplastičnih lijekova prema mehanizmima djelovanja na razini stanice. Objašnjeni su mehanizmi genotoksičnosti najvažnijih vrsta lijekova koji se primjenjuju u okviru uobičajenih protokola za liječenje zloćudnih novotvorina. Navedena je važeća klasifi kacija antineoplastika prema kancerogenom potencijalu, podaci o mutagenom potencijalu te je prikazana njihova podjela u skladu s anatomsko-terapijsko-kemijskim sustavom klasifi kacije. Sustavno su prikazani najvažniji rezultati svjetskih i hrvatskih istraživanja na populacijama radnika izloženih antineoplasticima, provedenih u razdoblju 1980.-2009. s pomoću četiri najčešće primjenjivane metode: analize izmjena sestrinskih kromatida, analize kromosomskih aberacija, mikronukleus-testa i komet-testa. Objašnjena su osnovna načela navedenih metoda te raspravljene njihove prednosti i nedostaci. Biološki pokazatelji daju važne podatke o individualnoj osjetljivosti profesionalno izloženih ispitanika koji mogu poslužiti unaprjeđenju postojećih uvjeta rada i upravljanju rizicima pri izloženosti genotoksičnim agensima. Na osnovi prednosti i nedostataka citogenetičkih metoda zaključeno je da je mikronukleus-test, koji podjednako uspješno dokazuje klastogene i aneugene učinke, jedna od najboljih metoda dostupnih za otkrivanje štetnih djelovanja antineoplastičnih lijekova koji su u aktivnoj primjeni.This article brings an overview of the mechanisms of action of antineoplastic drugs used in the clinical setting. It also describes the genotoxic potentials of the most important classes of antineoplastic drugs involved in standard chemotherapy protocols. Classifi cation of antineoplastic drugs according to the IARC monographs on the evaluation of carcinogenic risks to humans is accompanied by data on their mutagenicity and the most recent updates in the Anatomical Therapeutic Chemical (ATC) Classifi cation System. We report the main fi ndings of biomonitoring studies that were conducted in exposed healthcare workers all over the world between 1980 and 2009 using four biomarkers: sister chromatid exchanges, chromosome aberrations, micronuclei. and the comet assay. The methods are briefl y explained and their advantages and disadvantages discussed. Biomarkers provide important information on individual genome sensitivity, which eventually might help to improve current working practices and to manage the risks related with exposure to genotoxic agents. Taking into consideration all known advantages and drawbacks of the existing cytogenetic methods, the micronucleus assay, which is able to detect both clastogenic and aneugenic action, is the most suitable biomarker for assessing harmful effects of antineoplastic drugs currently used in health care

    Insights into G protein structure, function, and regulation

    No full text
    In multicellular organisms from Caenorhabditis elegans to Homo sapiens, the maintenance of homeostasis is dependent on the continual flow and processing of information through a complex network of cells. Moreover, in order for the organism to respond to an ever-changing environment, intercellular signals must be transduced, amplified, and ultimately converted to the appropriate physiological response. The resolution of the molecular events underlying signal response and integration forms the basis of the signal transduction field of research. An evolutionarily highly conserved group of molecules known as heterotrimeric guanine nucleotide-binding proteins (G proteins) are key determinants of the specificity and temporal characteristics of many signaling processes and are the topic of this review. Numerous hormones, neurotransmitters, chemokines, local mediators, and sensory stimuli exert their effects on cells by binding to heptahelical membrane receptors coupled to heterotrimeric G proteins. These highly specialized transducers can modulate the activity of multiple signaling pathways leading to diverse biological responses. In vivo, specific combinations of Galpha- and Gbetagamma-subunits are likely required for connecting individual receptors to signaling pathways. The structural determinants of receptor-G protein-effector specificity are not completely understood and, in addition to involving interaction domains of these primary acting proteins, also require the participation of scaffolding and regulatory proteins

    Structural and mechanistic insights into the association of PKCα-C2 domain to PtdIns(4,5)P2

    No full text
    C2 domains are widely-spread protein signaling motifs that in classical PKCs act as Ca2+-binding modules. However, the molecular mechanisms of their targeting process at the plasma membrane remain poorly understood. Here, the crystal structure of PKCα-C2 domain in complex with Ca2+, 1,2-dihexanoyl-sn-glycero-3-[phospho-l-serine] (PtdSer), and 1,2-diayl-sn-glycero-3-[phosphoinositol-4,5-bisphosphate] [PtdIns(4,5)P2] shows that PtdSer binds specifically to the calcium-binding region, whereas PtdIns(4,5)P2 occupies the concave surface of strands β3 and β4. Strikingly, the structure reveals a PtdIns(4,5)P2-C2 domain-binding mode in which the aromatic residues Tyr-195 and Trp-245 establish direct interactions with the phosphate moieties of the inositol ring. Mutations that abrogate Tyr-195 and Trp-245 recognition of PtdIns(4,5)P2 severely impaired the ability of PKCα to localize to the plasma membrane. Notably, these residues are highly conserved among C2 domains of topology I, and a general mechanism of C2 domain-membrane docking mediated by PtdIns(4,5)P2 is presented
    corecore