109 research outputs found

    A Prograding Margin during Global Sea-Level Maxima: An Example from Mahajanga Basin, Northwest Madagascar

    Get PDF
    The Mesozoic shelf margin in the Mahajanga Basin, northwest Madagascar, provides an example where inherited palaeobathymetry, coupled with sea-level changes, high sediment supply and fluctuations in accommodation influenced the stacking patterns and geometry of clinoforms that accreted onto a passive rifted margin. Two-dimensional (2D) seismic profiles are integrated with existing field data and geological maps to study the evolution of the margin. The basin contains complete records of transgression, highstand, regression and lowstand phases that took place from Jurassic to Cretaceous. Of particular interest is the Cretaceous, Albian to Turonian (ca. 113-93 Ma), siliciclastic shelf margin that prograded above a drowned Middle Jurassic carbonate platform. The siliciclastic phase of the shelf margin advanced ca. 70 km within ca. 20 My, and contains 10 distinct clinoforms mapped along a 2D seismic reflection data set. The clinoforms show a progressive decrease in height and slope length, and a fairly constant slope gradient through time. The successive shelf edges begin with a persistent flat to slightly downward-directed shelf-edge trajectory that changes to an ascending trajectory at the end of clinoform progradation. The progressive decrease in clinoform height and slope length is attributed to a decrease in accommodation. The prograding margin is interpreted to have formed when siliciclastic input increased as eastern Madagascar was uplifted. This work highlights the importance of sediment supply and inherited palaeobathymetry as controls on the evolution of shelf margins and it provides a new understanding of the evolution of the Mahajanga Basin during the Mesozoic

    Nanoanalytical Electron Microscopy Reveals a Sequential Mineralization Process Involving Carbonate-Containing Amorphous Precursors

    Get PDF
    A direct observation and an in-depth characterization of the steps by which bone mineral nucleates and grows in the extracellular matrix during the earliest stages of maturation, using relevant biomineralization models as they grow into mature bone mineral, is an important research goal. To better understand the process of bone mineralization in the extracellular matrix, we used nanoanalytical electron microscopy techniques to examine an in vitro model of bone formation. This study demonstrates the presence of three dominant CaP structures in the mineralizing osteoblast cultures: <80 nm dense granules with a low calcium to phosphate ratio (Ca/P) and crystalline domains; calcium phosphate needles emanating from a focus: “needle-like globules” (100–300 nm in diameter) and mature mineral, both with statistically higher Ca/P compared to that of the dense granules. Many of the submicron granules and globules were interspersed around fibrillar structures containing nitrogen, which are most likely the signature of the organic phase. With high spatial resolution electron energy loss spectroscopy (EELS) mapping, spatially resolved maps were acquired showing the distribution of carbonate within each mineral structure. The carbonate was located in the middle of the granules, which suggested the nucleation of the younger mineral starts with a carbonate-containing precursor and that this precursor may act as seed for growth into larger, submicron-sized, needle-like globules of hydroxyapatite with a different stoichiometry. Application of analytical electron microscopy has important implications in deciphering both how normal bone forms and in understanding pathological mineralization

    Evidence for Supercurrent Connectivity in Conglomerate Particles in NdFeAsO1-d

    Full text link
    Here we use global and local magnetometry and Hall probe imaging to investigate the electromagnetic connectivity of the superconducting current path in the oxygen-deficient fluorine-free Nd-based oxypnictides. High resolution transmission electron microscopy and scanning electron microscopy show strongly-layered crystallites, evidence for a ~ 5nm amorphous oxide around individual particles, and second phase neodymium oxide which may be responsible for the large paramagnetic background at high field and at high temperatures. From global magnetometry and electrical transport measurements it is clear that there is a small supercurrent flowing on macroscopic sample dimensions (mm), with a lower bound for the average (over this length scale) critical current density of the order of 103 A/cm2. From magnetometry of powder samples and local Hall probe imaging of a single large conglomerate particle ~120 microns it is clear that on smaller scales, there is better current connectivity with a critical current density of the order of 5 x 104 A/cm2. We find enhanced flux creep around the second peak anomaly in the magnetisation curve and an irreversibility line significantly below Hc2(T) as determined by ac calorimetry.Comment: 11 pages, 4 figure

    Inactivation, Clearance, and Functional Effects of Lung-Instilled Short and Long Silver Nanowires in Rats

    Get PDF
    There is a potential for silver nanowires (AgNWs) to be inhaled, but there is little information on their health effects and their chemical transformation inside the lungs in vivo. We studied the effects of short (S-AgNWs; 1.5 μm) and long (L-AgNWs; 10 μm) nanowires instilled into the lungs of Sprague–Dawley rats. S- and L-AgNWs were phagocytosed and degraded by macrophages; there was no frustrated phagocytosis. Interestingly, both AgNWs were internalized in alveolar epithelial cells, with precipitation of Ag2S on their surface as secondary Ag2S nanoparticles. Quantitative serial block face three-dimensional scanning electron microscopy showed a small, but significant, reduction of NW lengths inside alveolar epithelial cells. AgNWs were also present in the lung subpleural space where L-AgNWs exposure resulted in more Ag+ve macrophages situated within the pleura and subpleural alveoli, compared with the S-AgNWs exposure. For both AgNWs, there was lung inflammation at day 1, disappearing by day 21, but in bronchoalveolar lavage fluid (BALF), L-AgNWs caused a delayed neutrophilic and macrophagic inflammation, while S-AgNWs caused only acute transient neutrophilia. Surfactant protein D (SP-D) levels in BALF increased after S- and L-AgNWs exposure at day 7. L-AgNWs induced MIP-1α and S-AgNWs induced IL-18 at day 1. Large airway bronchial responsiveness to acetylcholine increased following L-AgNWs, but not S-AgNWs, exposure. The attenuated response to AgNW instillation may be due to silver inactivation after precipitation of Ag2S with limited dissolution. Our findings have important consequences for the safety of silver-based technologies to human health

    Template-free synthesis of highly porous boron nitride: insights into pore network design and impact on gas sorption

    No full text
    Production of biocompatible and stable porous materials, e.g., boron nitride, exhibiting tunable and enhanced porosity is a prerequisite if they are to be employed to address challenges such as drug delivery, molecular separations, or catalysis. However, there is currently very limited understanding of the formation mechanisms of porous boron nitride and the parameters controlling its porosity, which ultimately prevents exploiting the material’s full potential. Herein, we produce boron nitride with high and tunable surface area and micro/mesoporosity via a facile template-free method using multiple readily available N-containing precursors with different thermal decomposition patterns. The gases are gradually released, creating hierarchical pores, high surface areas (>1900 m2/g), and micropore volumes. We use 3D tomography techniques to reconstruct the pore structure, allowing direct visualization of the mesopore network. Additional imaging and analytical tools are employed to characterize the materials from the micro- down to the nanoscale. The CO2 uptake of the materials rivals or surpasses those of commercial benchmarks or other boron nitride materials reported to date (up to 4 times higher), even after pelletizing. Overall, the approach provides a scalable route to porous boron nitride production as well as fundamental insights into the material’s formation, which can be used to design a variety of boron nitride structures
    • …
    corecore