193 research outputs found

    Long-range quantum discord in critical spin systems

    Get PDF
    We show that quantum correlations as quantified by quantum discord can characterize quantum phase transitions by exhibiting nontrivial long-range decay as a function of distance in spin systems. This is rather different from the behavior of pairwise entanglement, which is typically short-ranged even in critical systems. In particular, we find a clear change in the decay rate of quantum discord as the system crosses a quantum critical point. We illustrate this phenomenon for first-order, second-order, and infinite-order quantum phase transitions, indicating that pairwise quantum discord is an appealing quantum correlation function for condensed matter systems

    On the quantumness of correlations in nuclear magnetic resonance

    Full text link
    Nuclear Magnetic Resonance (NMR) was successfully employed to test several protocols and ideas in Quantum Information Science. In most of these implementations the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this article we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogous of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrate how non-classical correlations of separable states may be used to simulate quantum dynamics. The results obtained are completely equivalent to the optical scenario, where entanglement (between two field modes) may be present

    Nonclassical correlation in NMR quadrupolar systems

    Full text link
    The existence of quantum correlation (as revealed by quantum discord), other than entanglement and its role in quantum-information processing (QIP), is a current subject for discussion. In particular, it has been suggested that this nonclassical correlation may provide computational speedup for some quantum algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been successfully used as a test bench for many QIP implementations, although it has also been continuously criticized for not presenting entanglement in most of the systems used so far. In this paper, we report a theoretical and experimental study on the dynamics of quantum and classical correlations in an NMR quadrupolar system. We present a method for computing the correlations from experimental NMR deviation-density matrices and show that, given the action of the nuclear-spin environment, the relaxation produces a monotonic time decay in the correlations. Although the experimental realizations were performed in a specific quadrupolar system, the main results presented here can be applied to whichever system uses a deviation-density matrix formalism.Comment: Published versio

    Markovian evolution of classical and quantum correlations in transverse-field XY model

    Full text link
    The transverse-field XY model in one dimension is a well-known spin model for which the ground state properties and excitation spectrum are known exactly. The model has an interesting phase diagram describing quantum phase transitions (QPTs) belonging to two different universality classes. These are the transverse-field Ising model and the XX model universality classes with both the models being special cases of the transverse-field XY model. In recent years, quantities related to quantum information theoretic measures like entanglement, quantum discord (QD) and fidelity have been shown to provide signatures of QPTs. Another interesting issue is that of decoherence to which a quantum system is subjected due to its interaction, represented by a quantum channel, with an environment. In this paper, we determine the dynamics of different types of correlations present in a quantum system, namely, the mutual information, the classical correlations and the quantum correlations, as measured by the quantum discord, in a two-qubit state. The density matrix of this state is given by the nearest-neighbour reduced density matrix obtained from the ground state of the transverse-field XY model in 1d. We assume Markovian dynamics for the time-evolution due to system-environment interactions. The quantum channels considered include the bit-flip, bit-phase-flip and phase-flip channels. Two different types of dynamics are identified for the channels in one of which the quantum correlations are greater in magnitude than the classical correlations in a finite time interval. The origins of the different types of dynamics are further explained. For the different channels, appropriate quantities associated with the dynamics of the correlations are identified which provide signatures of QPTs. We also report results for further-neighbour two-qubit states and finite temperatures.Comment: 10 pages, 11 figures, revtex4-1. arXiv admin note: text overlap with arXiv:1205.130

    Experimentally Witnessing the Quantumness of Correlations

    Full text link
    The quantification of quantum correlations (other than entanglement) usually entails laboured numerical optimization procedures also demanding quantum state tomographic methods. Thus it is interesting to have a laboratory friendly witness for the nature of correlations. In this Letter we report a direct experimental implementation of such a witness in a room temperature nuclear magnetic resonance system. In our experiment the nature of correlations is revealed by performing only few local magnetization measurements. We also compare the witness results with those for the symmetric quantum discord and we obtained a fairly good agreement

    Transverse Ising Model: Markovian evolution of classical and quantum correlations under decoherence

    Full text link
    The transverse Ising Model (TIM) in one dimension is the simplest model which exhibits a quantum phase transition (QPT). Quantities related to quantum information theoretic measures like entanglement, quantum discord (QD) and fidelity are known to provide signatures of QPTs. The issue is less well explored when the quantum system is subjected to decoherence due to its interaction, represented by a quantum channel, with an environment. In this paper we study the dynamics of the mutual information I(ρAB)I(\rho_{AB}), the classical correlations C(ρAB)C(\rho_{AB}) and the quantum correlations Q(ρAB)Q(\rho_{AB}), as measured by the QD, in a two-qubit state the density matrix of which is the reduced density matrix obtained from the ground state of the TIM in 1d. The time evolution brought about by system-environment interactions is assumed to be Markovian in nature and the quantum channels considered are amplitude damping, bit-flip, phase-flip and bit-phase-flip. Each quantum channel is shown to be distinguished by a specific type of dynamics. In the case of the phase-flip channel, there is a finite time interval in which the quantum correlations are larger in magnitude than the classical correlations. For this channel as well as the bit-phase-flip channel, appropriate quantities associated with the dynamics of the correlations can be derived which signal the occurrence of a QPT.Comment: 8 pages, 7 figures, revtex4-1, version accepted for publication in Eur. Phys. J.

    Decoherence Dynamics of Measurement-Induced Nonlocality and comparison with Geometric Discord for two qubit systems

    Full text link
    We check the decoherence dynamics of Measurement-induced Nonlocality(in short, MIN) and compare it with geometric discord for two qubit systems. There are quantum states, on which the action of dephasing channel cannot destroy MIN in finite or infinite time. We check the additive dynamics of MIN on a qubit state under two independent noise. Geometric discord also follows such additive dynamics like quantum discord. We have further compared non-Markovian evolution of MIN and geometric discord under dephasing and amplitude damping noise for pure state and it shows distinct differences between their dynamics.Comment: 11 pages, 10 figures, Revte

    Environment-induced sudden transition in quantum discord dynamics

    Get PDF
    Non-classical correlations play a crucial role in the development of quantum information science. The recent discovery that non-classical correlations can be present even in separable (unentangled) states has broadened this scenario. This generalized quantum correlation has been increasing relevance in several fields, among them quantum communication, quantum computation, quantum phase transitions, and biological systems. We demonstrate here the occurrence of the sudden-change phenomenon and immunity against some sources of noise for the quantum discord and its classical counterpart, in a room temperature nuclear magnetic resonance setup. The experiment is performed in a decohering environment causing loss of phase relations among the energy eigenstates and exchange of energy between system and environment, resulting in relaxation to a Gibbs ensemble
    corecore