32 research outputs found

    Scaling of Inertial Delays in Terrestrial Mammals

    Get PDF
    As part of its response to a perturbation, an animal often needs to reposition its body. Inertia acts to oppose the corrective motion, delaying the completion of the movement—we refer to this elapsed time as inertial delay. As animal size increases, muscle moment arms also increase, but muscles are proportionally weaker, and limb inertia is proportionally larger. Consequently, the scaling of inertial delays is complex. Our intent is to determine how quickly different sized animals can produce corrective movements when their muscles act at their force capacity, relative to the time within which those movements need to be performed. Here, we quantify inertial delay using two biomechanical models representing common scenarios in animal locomotion: a distributed mass pendulum approximating swing limb repositioning (swing task), and an inverted pendulum approximating whole body posture recovery (posture task). We parameterized the anatomical, muscular, and inertial properties of these models using literature scaling relationships, then determined inertial delay for each task across a large range of movement magnitudes and the full range of terrestrial mammal sizes. We found that inertial delays scaled with an average of M0.28 in the swing task and M0.35 in the posture task across movement magnitudes—larger animals require more absolute time to perform the same movement as small animals. The time available to complete a movement also increases with animal size, but less steeply. Consequently, inertial delays comprise a greater fraction of swing duration and other characteristic movement times in larger animals. We also compared inertial delays to the other component delays within the stimulus-response pathway. As movement magnitude increased, inertial delays exceeded these sensorimotor delays, and this occurred for smaller movements in larger animals. Inertial delays appear to be a challenge for motor control, particularly for bigger movements in larger animals

    _

    Get PDF
    SUMMARY We isolated step-to-step transitions from other contributors to walking mechanics using a cyclical rocking task and then examined the contribution of individual joints to the total work required to redirect the velocity of the center of mass (COM). Nine participants were instructed to rock backward and forward in the sagittal plane, eliminating the need to swing the legs and progress forward. To systematically increase the required work, we increased step length from 60 to 100% of leg length, keeping rocking frequency constant. The individual limbs method quantified the COM work and the joint power method apportioned the COM work among its various sources. As predicted by a physics-based model, we found that work in rocking was performed mainly during the step-to-step transitions and increased strongly with step length. We also found that increases in the average COM work rate exacted a proportional metabolic cost. The similar patterns of COM work and COM work rate during rocking and walking support the use of rocking to isolate the mechanics of step-to-step transitions. We found that the ankle was the main joint contributing to the positive work required to redirect the COM velocity during forward rocking. At the longest length, it accounted for 88% of the work performed by the trailing leg joints. Interestingly, the summed contribution of ankle, knee and hip joint work accounted for only 39% of the front leg negative COM work during the forward transition, suggesting that most of the collision work is performed by passive tissue

    Using Asymmetry to Your Advantage: Learning to Acquire and Accept External Assistance During Prolonged Split-belt Walking

    Get PDF
    People can learn to exploit external assistance during walking to reduce energetic cost. For example, walking on a split-belt treadmill affords the opportunity for people to redistribute the mechanical work performed by the legs to gain assistance from the difference in belts’ speed and reduce energetic cost. Though we know what people should do to acquire this assistance, this strategy is not observed during typical adaptation studies. We hypothesized that extending the time allotted for adaptation would result in participants adopting asymmetric step lengths to increase the assistance they can acquire from the treadmill. Here, participants walked on a split-belt treadmill for 45 min while we measured spatiotemporal gait variables, metabolic cost, and mechanical work. We show that when people are given sufficient time to adapt, they naturally learn to step further forward on the fast belt, acquire positive mechanical work from the treadmill, and reduce the positive work performed by the legs. We also show that spatiotemporal adaptation and energy optimization operate over different timescales: people continue to reduce energetic cost even after spatiotemporal changes have plateaued. Our findings support the idea that walking with symmetric step lengths, which is traditionally thought of as the endpoint of adaptation, is only a point in the process by which people learn to take advantage of the assistance provided by the treadmill. These results provide further evidence that reducing energetic cost is central in shaping adaptive locomotion, but this process occurs over more extended timescales than those used in typical studies

    "Body-In-The-Loop": Optimizing Device Parameters Using Measures of Instantaneous Energetic Cost

    Get PDF
    This paper demonstrates methods for the online optimization of assistive robotic devices such as powered prostheses, orthoses and exoskeletons. Our algorithms estimate the value of a physiological objective in real-time (with a body “in-the-loop”) and use this information to identify optimal device parameters. To handle sensor data that are noisy and dynamically delayed, we rely on a combination of dynamic estimation and response surface identification. We evaluated three algorithms (Steady-State Cost Mapping, Instantaneous Cost Mapping, and Instantaneous Cost Gradient Search) with eight healthy human subjects. Steady-State Cost Mapping is an established technique that fits a cubic polynomial to averages of steady-state measures at different parameter settings. The optimal parameter value is determined from the polynomial fit. Using a continuous sweep over a range of parameters and taking into account measurement dynamics, Instantaneous Cost Mapping identifies a cubic polynomial more quickly. Instantaneous Cost Gradient Search uses a similar technique to iteratively approach the optimal parameter value using estimates of the local gradient. To evaluate these methods in a simple and repeatable way, we prescribed step frequency via a metronome and optimized this frequency to minimize metabolic energetic cost. This use of step frequency allows a comparison of our results to established techniques and enables others to replicate our methods. Our results show that all three methods achieve similar accuracy in estimating optimal step frequency. For all methods, the average error between the predicted minima and the subjects’ preferred step frequencies was less than 1% with a standard deviation between 4% and 5%. Using Instantaneous Cost Mapping, we were able to reduce subject walking-time from over an hour to less than 10 minutes. While, for a single parameter, the Instantaneous Cost Gradient Search is not much faster than Steady-State Cost Mapping, the Instantaneous Cost Gradient Search extends favorably to multi-dimensional parameter spaces

    General Variability Leads to Specific Adaptation Toward Energy Optimal Policies

    Get PDF
    Our nervous systems can learn optimal control policies in response to changes to our bodies, tasks, and movement contexts. For example, humans can learn to adapt their control policy in walking contexts where the energy-optimal policy is shifted along variables such as step frequency or step width. However, it is unclear how the nervous system determines which ways to adapt its control policy. Here, we asked how human participants explore through variations in their control policy to identify more optimal policies in new contexts. We created new contexts using exoskeletons that apply assistive torques to each ankle at each walking step. We analyzed four variables that spanned the levels of the whole movement, the joint, and the muscle: step frequency, ankle angle range, total soleus activity, and total medial gastrocnemius activity. We found that, across all of these analyzed variables, variability increased upon initial exposure to new contexts and then decreased with experience. This led to adaptive changes in the magnitude of specific variables, and these changes were correlated with reduced energetic cost. The timescales by which adaptive changes progressed and variability decreased were faster for some variables than others, suggesting a reduced search space within which the nervous system continues to optimize its policy. These collective findings support the principle that exploration through general variability leads to specific adaptation toward optimal movement policies

    Simultaneous positive and negative external mechanical work in human walking

    No full text
    Abstract In human walking, the center of mass motion is similar to an inverted pendulum. Viewing double support as a transition from one inverted pendulum to the next, we hypothesized that the leading leg performs negative work to redirect the center of mass velocity, while simultaneously, the trailing leg performs positive work to replace the lost energy. To test this hypothesis, we developed a method to quantify the external mechanical work performed by each limb (individual limbs method). Traditional measures of external mechanical work use the sum of the ground reaction forces acting on the limbs (combined limbs method) allowing for the mathematical cancellation of simultaneous positive and negative work during multiple support periods. We expected to find that the traditional combined limbs method underestimates external mechanical work by a substantial amount. We used both methods to measure the external mechanical work performed by humans walking over a range of speeds. We found that during double support, the legs perform a substantial amount of positive and negative external work simultaneously. The combined limbs measures of positive and negative external work were approximately 33% less than those calculated using the individual limbs method. At all speeds, the trailing leg performs greater than 97% of the double support positive work while the leading leg performs greater than 94% of the double support negative work.

    Control of ankle extensor muscle activity in walking cats

    No full text

    Supplementary methods and data from Scaling of sensorimotor delays in terrestrial mammals

    No full text
    Details of systematic reviews, component delay data, calculation of delay scaling and confidence intervals, phylogenetically independent contrasts analyses, and component delay simulations
    corecore