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General variability leads to specific adaptation toward optimal 
movement policies

Sabrina J. Abram1, Katherine L. Poggensee2, Natalia Sánchez3, Surabhi N. Simha4, James 
M. Finley3,5,6, Steven H. Collins2, J. Maxwell Donelan7,8,9,*

1School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
2Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
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CA 90089, USA
4Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
5Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 
90089, USA
6Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, 
USA
7Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC 
V5A 1S6, Canada
8Twitter: @maxdonelan
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SUMMARY
Our nervous systems can learn optimal control policies in response to changes to our bodies, 
tasks, and movement contexts. For example, humans can learn to adapt their control policy in 
walking contexts where the energy-optimal policy is shifted along variables such as step frequency 
or step width. However, it is unclear how the nervous system determines which ways to adapt 
its control policy. Here, we asked how human participants explore through variations in their 
control policy to identify more optimal policies in new contexts. We created new contexts using 
exoskeletons that apply assistive torques to each ankle at each walking step. We analyzed four 
variables that spanned the levels of the whole movement, the joint, and the muscle: step frequency, 
ankle angle range, total soleus activity, and total medial gastrocnemius activity. We found that, 
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across all of these analyzed variables, variability increased upon initial exposure to new contexts 
and then decreased with experience. This led to adaptive changes in the magnitude of specific 
variables, and these changes were correlated with reduced energetic cost. The timescales by which 
adaptive changes progressed and variability decreased were faster for some variables than others, 
suggesting a reduced search space within which the nervous system continues to optimize its 
policy. These collective findings support the principle that exploration through general variability 
leads to specific adaptation toward optimal movement policies.

In brief
Abram et al. find that the nervous system uses general variability to explore new ways of walking 
when wearing powered exoskeletons. It uses this exploration to identify specific variables that 
improve walking and to refine its search space of new gaits. It adapts along the variables that 
improve walking, converging on a new optimal gait.

INTRODUCTION
Humans are adept at learning optimal control policies. We use the term ‘‘control policy’’ 
to refer to the nervous system’s mapping from states to the actions taken in those states.1 

The nervous system’s actions are realized through motor commands, and its perceived states 
may range from the lengths of individual muscles to its estimate of the unevenness of 
the terrain. A control policy can be adapted to optimize an objective function, and when 
adaptation can no longer improve the objective, we refer to this as the ‘‘optimal control 
policy.’’ The objective function may consist of multiple terms, and the relative importance 
of these terms may depend on the task and context. For example, in the task of reaching, 
people can adapt their control policy to optimize an objective function consisting of error 
and effort.2 In walking, studies have shown that the nervous system’s objective function 
includes metabolic energetic cost among other terms and constraints such as stability or risk 
of falling.3,4 When we measure the relationship between energetic cost and step frequency, 
we find that it is bowl shaped and that people prefer to walk with a step frequency that 
coincides with the minimum of this bowl.5,6 In addition, when we reshape this relationship 
to shift the energy-optimal step frequency, we find that people adapt their step frequency 
to optimize energetic cost.7 This same objective appears to influence the nervous system’s 
control of other gait parameters such as step width, suggesting that the nervous system’s 
continuous learning of optimal control policies for walking is a general phenomenon.8,9

Optimizing a control policy involves several steps. One step is to select a more optimal 
control policy from among candidate policies. Studies suggest that the nervous system 
greedily selects local solutions that improve on the underlying objective function.10,11 Prior 
to selecting the next policy, the nervous system must first evaluate a set of candidate 
policies. One way to do so is to locally explore. Songbirds, for example, exhibit variability 
in vocal control, which appears to enable optimization of song performance.12–14 Similar 
mechanisms underlie human vocal control.15 That is, variability is not just an undesirable 
outcome of noise in the nervous system’s control but also a means to explore and discover 
better outcomes.16,17 However, variability can be costly—deviating from the previously 
optimal policy in contexts where the optimal policy has not shifted yields suboptimal 
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behavior. Even in contexts where the optimal policy has shifted, variability that is not in 
the same direction as the shift is suboptimal. It seems conceivable that the nervous system 
has some understanding of which aspects of its control policy to explore and adapt given 
prior experience. For example, in reaching arm movements, some people exhibit increases in 
baseline variability along aspects that are relevant to the task, and these selective increases in 
variability appear to enable faster learning.18 However, it is useful to consider an alternative 
perspective where the nervous system has minimal prior experience that it can draw from 
and may need to vary many aspects of its control policy in order to learn which aspects give 
rise to better outcomes. The nervous system may need to determine which aspects of its 
control policy to adapt when learning to walk with an assistive device—a new context that 
introduces a control system external to that of the nervous system.

How the nervous system explores the space of control policies may influence how quickly 
it learns new optimal policies. Exploration faces a challenge—as the number of possible 
states and actions increases, the number of candidate control policies increases rapidly. This 
expansion of the space of control policies can impede learning as searching through and 
evaluating many policies takes time—a challenge known as the ‘‘curse of dimensionality.’’1 

The nervous system might overcome this challenge of the combinatorial complexity of 
the policy space by reducing the dimensionality of the policy space that it searches so it 
has fewer dimensions along which to explore for new optimal control policies.19 How the 
nervous system does this is presently unknown.

Here, we determined how the nervous system explores through variations in its control 
policy to learn new optimal policies in new contexts. To accomplish this, we performed 
a post hoc analysis of data from our recent study where we gave participants experience 
with ankle exoskeleton assistance over 6 non-consecutive days.20 This recent study 
found that people arrive at new energy-optimal policies when given sufficient experience 
with exoskeleton assistance.20 On the other hand, the nervous system’s mechanisms for 
converging on this new optimal policy are still unclear. Here, we tested three hypotheses 
about learning in new contexts: (1) the nervous system first explores by increasing general 
variability—where general variability refers to variability across many or all aspects of 
gait—to identify variables that improve its objective, (2) rather than decrease exploration 
across all variables in harmony, the nervous system selectively decreases variability along 
some variables more quickly than others in order to refine its control policy search space 
over time, and (3) the nervous system learns to adapt the magnitude of specific variables and 
exploit a new control policy that reduces energetic cost.

RESULTS
We created new contexts using ankle exoskeletons. We applied assistive torques to each 
ankle at each walking step by transmitting forces through a Bowden cable that was attached 
to an ankle lever on an ankle exoskeleton. High-powered off-board motors generated the 
forces that were transmitted through the cables, and high-frequency controllers commanded 
the motors to generate the desired torques. All participants experienced two main contexts 
while walking on an instrumented treadmill: without-assistance and with-assistance. In the 
without-assistance context, participants walked without the ankle exoskeletons (Figure 1A) 
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or while wearing the ankle exoskeletons but with slack cables and minimal applied torques 
(Figure 1B). In the with-assistance context, participants walked with the ankle exoskeletons 
while they generated torques that acted to extend each ankle during its stance phase. 
Figure 1C illustrates the general pattern of the applied torque, which was determined by 
a predefined control law that applied a constant magnitude of peak torque, while rise time, 
peak torque time, and fall time were constant percentages of the stride time.

To study the nervous system’s learning mechanisms in new contexts, we gave participants 
experience with walking with exoskeleton assistance. On each day over 6 non-consecutive 
days, all participants walked without the ankle exoskeletons, with the ankle exoskeletons 
providing minimal applied torques, and with the ankle exoskeletons providing assistive 
torques. Participants completed these three conditions twice for 6 min each. The three 
conditions were first completed in random order, and then again in that same order, but 
reversed (e.g., CABBAC; Figures 1D and 1E). Participants completed additional exoskeleton 
assistance trials from the second day onward (Figure 1E), but we did not include these 
trials in our current analyses as they were designed to test the effect of different training 
protocols.20 In these additional trials, some participants (n = 5) repeatedly experienced 
the predefined control law described above. Other participants (n = 5) experienced this 
predefined control law interspersed between human-in-the-loop optimization, where we used 
real-time measures of energetic cost to customize the control law parameters (Figure S1). 
Despite differences in these additional trials, all participants achieved similar reductions in 
energetic cost in response to the predefined control law that they repeatedly experienced on 
each day for 6 days (p = 0.62).20 We therefore grouped participants (n = 10) and restricted 
our analyses to changes in response to the predefined control law that we define above as 
the with-assistance context. When accounting for the amount of experience with exoskeleton 
assistance, we include not only the time spent walking in the with-assistance trials that we 
analyzed but also the time spent walking in the additional trials because participants also 
experienced assistive ankle torques in human-in-the-loop optimization.

We studied exploration and adaptation in this new context by measuring changes at the 
levels of the whole movement, the joint, and the muscle. We focused our analysis on 
four variables: step frequency, ankle angle range during stance, total soleus activity, and 
total medial gastrocnemius activity (see STAR Methods). Step frequency can influence 
exoskeleton assistance through the timing of the assistive torque pattern because rise time, 
peak torque time, and fall time were all expressed as percentages of stride time in our 
control law parameterization. Ankle angle range may influence the power and work that 
the exoskeleton applies to the ankle by changing the angular displacement over which 
the assistive torque is applied. Lastly, the nervous system may learn to accept assistive 
torques at the ankle by lowering the contribution to the total ankle torque provided by the 
extensor muscles. The two primary ankle extensor muscles are soleus and gastrocnemius, 
and here, we analyzed both of their activities. We selected these variables a priori, 
based on preliminary evidence of how walking can take advantage of ankle exoskeleton 
assistance.21–25 These variables reflect only some of the nervous system’s control policy 
parameters—there are likely many other parameters that allow the nervous system to, for 
example, achieve a particular step frequency using many combinations of ankle angle range, 
total soleus activity, and total medial gastrocnemius activity.
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A general increase in variability upon initial exposure to new contexts
We quantified variability within each variable by high-pass filtering its signal to include 
timescales of 30 steps or less and then calculating the standard deviation of this filtered 
signal during the last 3 min of each 6-min trial (see STAR Methods). This method filtered 
out the relatively slow signal changes that we associate with adaptive changes, but not the 
relatively rapid changes that occur from step to step and over several steps that we associate 
with exploration. For most variables, we quantified each participant’s without-assistance 
variability from the condition where they were not wearing the ankle exoskeletons. The 
exception was ankle angle range where we applied identical calculations but to the condition 
where participants were walking while wearing the ankle exoskeletons but with the devices 
applying minimal torques. The reason for this exception was that we needed the exoskeleton 
sensors to calculate ankle angle. We refer to the without-assistance variability averaged 
across the two trials on the first day as ‘‘baseline variability.’’ We use this baseline 
variability to normalize with-assistance variability.

Upon initial exposure to the exoskeleton assistance context, participants walked with 
increased variability across all variables that we analyzed. This was evident when comparing 
with-assistance variability averaged across the two first day trials to without-assistance 
baseline variability, with increases ranging from 21% to 279% (mean ± standard deviation, 
paired t test; step frequency: +56.2% ± 27.6%, p = 2.0 × 10−4, Figure 2A; ankle angle range: 
+278.8% ± 85.0%, p = 6.8 × 10−7, Figure 2B; total soleus activity: +21.1% ± 25.3%, p = 
0.026, Figure 2C; total medial gastrocnemius activity: +46.0% ± 19.6%, p = 1.7 × 10−5, 
Figure 2D; representative participant: Figure 2E).

A general decrease in variability with increased experience
As participants walked with exoskeleton assistance over multiple days, we determined how 
variability changed with this increased experience. We found that, as experience increased, 
participants walked with decreased variability across all variables that we analyzed. This 
was evident when comparing with-assistance variability measured on the last day to that 
measured on the first day, with decreases ranging from −18% to −39% (mean ± standard 
deviation, paired t test; step frequency: −38.5% ± 9.8%, p = 4.9 × 10−5, Figure 2A; ankle 
angle range: −26.3% ± 22.8%, p = 6.5 × 10−3, Figure 2B; total soleus activity: −18.3% 
± 21.2%, p = 0.013, Figure 2C; total medial gastrocnemius activity: −19.7% ± 13.2%, 
p = 1.5 × 10−3, Figure 2D). By the last day, participants’ with-assistance variability was 
indistinguishable from their baseline variability for step frequency (−5.1% ± 17.3%, paired 
t test: p = 0.32) and total soleus activity (−3.3% ± 26.9%, paired t test: p = 0.39) but 
remained elevated for ankle angle range (+166.2% ± 52.5%, paired t test: p = 6.7 × 10−6) 
and total medial gastrocnemius activity (+15.8% ± 15.8%, paired t test: p = 0.020). That 
is, the nervous system returned variability toward, and in some cases to, baseline variability 
with increased experience.

Adaptation occurs along specific variables, and these changes correlate with reduced 
energetic cost

We use the term ‘‘adaptation’’ to refer to changes in the magnitude of a variable that 
occur with experience. We quantified each variable’s magnitude by averaging its signal 

Abram et al. Page 5

Curr Biol. Author manuscript; available in PMC 2023 May 23.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



during the last 3 min of each 6-min trial. People appear to have an established policy for 
without-assistance contexts—we observed minimal changes in the magnitude of variables 
when comparing the first and last days of without-assistance walking (mean ± standard 
deviation, paired t test; step frequency: −0.78% ± 2.6%, p = 0.38; ankle angle range: 5.6% ± 
7.2%, p = 0.046; total soleus activity: −2.7% ± 8.1%, p = 0.22; total medial gastrocnemius 
activity: −4.0% ± 6.5%, p = 0.074). We refer to the without-assistance magnitude averaged 
over the two trials on the first day as the baseline value. We use this baseline value to 
normalize the measured with-assistance magnitudes. We estimated the energetic cost of each 
trial in the standard manner—using respiratory gas analysis of the last 3 min of each 6-min 
trial (see STAR Methods). We normalized energetic cost during with-assistance trials to 
each participant’s energetic cost averaged over two without-assistance trials—when walking 
with the ankle exoskeletons applying minimal torques—on the first day. We used linear 
mixed-effects regression to estimate the slope of the relationship between a variable and 
energetic cost. This mixed-effects model used a single slope for each variable to estimate 
the relationship that is shared between participants while allowing for individual participant 
energetic cost intercepts (see STAR Methods).

Participants learned to adapt three of four variables and these three variables correlate with 
energetic cost. We found a significant correlation between energetic cost and step frequency 
(slope = 2.2, 95% CI [1.5, 2.8], p = 3.4 × 10−9; Figure 3A), total soleus activity (slope 
= 0.69, 95% CI [0.44, 0.94], p = 2.9 × 10−7; Figure 3C), and total medial gastrocnemius 
activity (slope = 0.36, 95% CI [0.18, 0.54], p = 1.7 × 10−4; Figure 3D). The correlation 
between energetic cost and ankle angle range was not significant (slope = 0.069, 95% CI 
[−0.030, 0.17], p = 0.17; Figure 3B). As participants gained experience with walking with 
exoskeleton assistance, variables that correlated with energetic cost adapted in the direction 
that reduced cost. Comparing the first and last days of with-assistance trials, we found 
changes in step frequency (−3.5% ± 3.4%, paired t test: p = 9.8 × 10−3, Figure 3E), total 
soleus activity (−10.4% ± 11.0%, paired t test: p = 0.023, Figure 3G), and total medial 
gastrocnemius activity (−13.4% ± 12.4%, paired t test: p = 5.4 × 10−3, Figure 3H), but 
not in ankle angle range (−0.32% ± 11.5%, paired t test: p = 0.78, Figure 3F). Participants 
learned to exploit a new control policy that reduced energetic cost by −25.0% ± 9.9% 
(p = 3.0 × 10−5, Figure 3I) when walking with ankle exoskeleton assistance on the last 
day compared with the first day. To be clear, adaptation along a specific variable that 
correlates with reductions in energetic cost suggests but does not prove that energetic cost 
drives this adaptation. We cannot rule out, for example, that the observed adaptation is 
due to optimization of different objectives that also correlate with changes in the observed 
variables.

Variability decreases quickly for quickly adapting variables
We modeled the timing of adaptive changes, as well as the timing of decreases in 
variability, as an exponential decrease from an initial value to a final steady-state value. 
We used nonlinear mixed-effects regression with a single time constant to estimate the time 
constant that is shared between participants while allowing for individual participant offsets 
(Equation 2 in STAR Methods). We then used bootstrapping to determine the dispersion 
of each time constant (see STAR Methods). We found that participants adapted along step 
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frequency with a time constant of 208.9 min (interquartile range [IQR] [150.0, 311.7], 
R-squared = 0.52; Figure 4A), total soleus activity with a time constant of 5.7 min (IQR 
[3.9, 8.6], R-squared = 0.47; Figure 4C), and total medial gastrocnemius activity with a 
time constant of 7.8 min (IQR [6.3, 10.2], R-squared = 0.77; Figure 4D). We found that 
variability decreased along step frequency with a time constant of 112.4 min (IQR [97.5, 
129.9], R-squared = 0.70; Figure 4E), ankle angle range with a time constant of 87.4 min 
(IQR [70.5, 108.7], R-squared = 0.48; Figure 4F), total soleus activity with a time constant 
of 4.6 min (IQR [3.4, 6.3], R-squared = 0.58; Figure 4G), and total medial gastrocnemius 
activity with a time constant of 5.6 min (IQR [4.6, 6.9], R-squared = 0.63; Figure 4H).

Variables that adapted quickly also had rapid decreases in variability. We used bootstrapping 
to determine the dispersion of the time constant of adaptation for each variable and then 
tested for differences in time constants between variables (see STAR Methods). We found 
that total soleus activity and total medial gastrocnemius activity adapted with faster time 
constants than step frequency (ANOVA; total soleus activity versus step frequency: p < 
0.001; total medial gastrocnemius activity versus step frequency: p < 0.001; total soleus 
activity versus total medial gastrocnemius activity: p < 0.001; Figure 5A). Next, we 
performed the same analysis but for time constants of variability. We found that variability 
in a similar way decreased faster for total soleus activity and total medial gastrocnemius 
activity than for step frequency (ANOVA; total soleus activity versus step frequency: p < 
0.001; total medial gastrocnemius activity versus step frequency: p < 0.001; total soleus 
activity versus total medial gastrocnemius activity: p < 0.001; Figure 5B).

DISCUSSION
We provide insight into how the nervous system navigates a space of control policies to learn 
new optimal policies in new contexts. We created new contexts using ankle exoskeleton 
assistance and studied learning as energy optimization in human walking. We analyzed 
two processes—variability and adaptation—across four variables—step frequency, ankle 
angle range, total soleus activity, and total medial gastrocnemius activity. We found that, 
at the beginning of experience in new contexts, variability increased across all variables 
that we analyzed, and with increased experience, variability decreased across all variables. 
This appeared to lead to adaptive changes in the magnitude of specific variables, and 
these changes correlated with reduced energy cost. Adaptation progressed quickly for some 
variables but slowly for others, suggesting that the nervous system can independently control 
these variables. Variability progressed quickly for some variables but slowly for others, 
suggesting that the nervous system may optimize in a manner that reduces its control policy 
search space over time.

These findings generalize to other movement variables. We a priori selected four variables 
based on our understanding of how walking can take advantage of ankle exoskeleton 
assistance and without knowledge of how these variables changed over time or how 
these changes were associated with energetic cost. These four variables are only a subset 
of our measured dataset—which includes stride parameters, ground reaction forces, joint 
kinematics, and muscle activity—enabling us to test whether the conclusions we arrive at 
from our first analysis generalize to other variables. Toward this, we sampled four additional 
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variables: step width, peak ankle extension angle (which occurs during swing), total rectus 
femoris activity (a knee extensor and hip flexor muscle), and total biceps femoris activity (a 
knee flexor and hip extensor muscle). These four additional variables do not directly take 
advantage of ankle exoskeleton assistance but in the same way capture learning at the levels 
of the whole movement, the joint, and the muscle. Our additional analysis revealed that 
participants first increased and then decreased variability across three of these four variables: 
peak ankle extension angle, total rectus femoris activity, and total biceps femoris activity 
(Figure S2). Participants learned to adapt specific variables and these variables correlated 
with reductions in energetic cost (Figure S3). Some variables adapted faster than others, 
and this adaptation was accompanied by decreases in variability (Figure S4). We interpret 
these collective findings as supporting the principle that general variability leads to specific 
adaptation toward optimal control policies. Our data and code are open access, allowing 
others to test additional variables for the generalizability of these conclusions.

These findings generalize to other movement contexts. We use the context of walking on 
a split-belt treadmill to again test how motor variability changes with motor learning. We 
reanalyzed a dataset where participants walked for 6 min in a familiar context with the 
treadmill belts moving at the same speed and then for 45 min in a new context with the 
treadmill belts moving at different speeds.26 We found that participants increased variability 
in step length asymmetry during the initial 100 strides of split-belt walking compared 
with the baseline during tied-belt walking (p = 2.0 × 10−7; Figure 6). Participants then 
decreased variability in step length asymmetry during the final 100 strides of 45 min of 
split-belt walking compared with the initial 100 strides (p = 1.2 × 10−4; Figure 6). During 
this time, they also learned to adopt positive asymmetries and reduce energetic cost.26 The 
process of adaptation in split-belt walking has been explained by more than one theory. One 
well established theory is that people adapt to minimize a sensory prediction error which 
is traditionally tracked using step length asymmetry—step length asymmetry gradually 
adapts when the treadmill perturbation is introduced and then shows after-effects when it 
is removed.27,28 This observation is consistent with the hypothesis that sensory prediction 
error, or difference between predicted and observed outcomes, drives the nervous system’s 
adaptation.29 For example, prolonged exposure over multiple days to split-belt walking 
results in both recalibration of movement and of perception of the split-belt difference.30 

However, there is also evidence that adaptation is not driven by this process alone. Another 
theory is that people adapt to reduce energetic cost—foot placement gradually adapts to take 
advantage of positive work performed by the treadmill (due to one belt moving faster than 
the other belt) and reduce work performed by the legs.31 This can explain the observation 
that participants adopt positive step length asymmetries.26 Interestingly, these positive 
asymmetries were also observed during multiple day exposure, indicating that energetic 
cost reduction among other mechanisms might be at play during locomotor adaptation.30 

Importantly, we suspect the role of variability for adaptation is fairly independent of 
these candidate learning processes.18 Here, we have demonstrated that changes in motor 
variability generalize not only to other movement variables but also to other movement 
contexts.

The nervous system appears to reduce the dimensionality of its search space over time. We 
infer the extent of the space in which the nervous system searches for new policies from the 
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extent of our measured gait, joint, and muscle variability. Variability first increases across 
nearly all biomechanical variables, suggesting a large search space. Variability then quickly 
decreases for some biomechanical variables as their adaptation progresses, suggesting a 
reduced space in which the nervous system optimizes fewer control policy parameters. The 
biomechanical variables we have chosen to measure do not map perfectly onto the nervous 
system’s control policy parameters—it is unlikely that the nervous system’s control policy 
has a parameter specifically for step frequency or total soleus activity. Consequently, if 
the nervous system were to stop exploring just one of its control parameters, we would 
likely measure this as a small decrease in variability across many biomechanical variables 
rather than a return to baseline variability in any single biomechanical variable, and 
because biomechanical variability is a consequence of many control parameters, that some 
biomechanical variables do return to baseline variability suggests a large reduction in the 
nervous system’s control policy search space.

A reduced search space is superior to continuing with general exploration of learned 
policies. One reason for this is that continuing to explore variables that are already 
optimized results in needlessly increased costs. A second reason is that searching by 
general exploration may take a long time. That is, exploring more variables results in 
larger search spaces, and these search spaces fall victim to the curse of dimensionality 
where there are exponentially more candidate control policies to evaluate.32 If the nervous 
system reduces the number of variables along which it explores, it has fewer combinations 
of states and actions to try and can therefore employ a more directed optimization for 
selecting more optimal control policies from among candidate policies.10,11 In contrast 
to general exploration during learning of a new policy, learned policies often appear to 
have a low-dimensional structure. In motor coordination, for example, muscle activation 
patterns can be explained by a limited set of muscle synergies—or muscle activation patterns 
with consistent spatial and temporal characteristics.33–36 Moreover, in neural systems such 
as the motor cortex of a monkey, relatively complex responses from individual neurons 
can be explained by relatively simple responses from a population of neurons.37,38 Our 
findings show that, in new contexts, the nervous system can arrive at such a low-dimensional 
structure of control after first benefiting from general exploration. An interesting and open 
question is what elicits adaptation and why adaptation occurs quickly for some variables, 
and more slowly for others. There are several factors—which do not act in isolation—that 
can influence adaptation. Two factors may be the level of exploratory variability and the cost 
gradient—both can influence the range of cost savings that the nervous system experiences. 
Another factor may be how the biomechanical variables relate to the nervous system’s 
control policy parameters—a variable that we measure may reflect one or many parameters 
that the nervous system optimizes, and the level of complexity may influence the timescale 
of adaptation we observe.

Some of our findings are consistent with findings in published literature. It is well 
established that energy optimization is a major objective in the nervous system’s control 
of walking.7,9,39 However, it is unclear how the nervous system navigates the many possible 
control policies to learn new optimal policies. We demonstrate that people explore through 
general variability to identify variables that improve the objective, and those that do 
not. People then refine the space in which they explore as they learn to adapt specific 
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variables and reduce energetic cost. We suspect that this understanding can be applied to the 
optimization of other cost functions too. For example, a multi-objective cost function might 
provide a more general view of optimization during non-steady-state walking by including 
terms such as energy, stability, or some weighted combination of these and other terms.4,9 A 
recent study provided a theoretical basis for how people learn new optimal policies in new 
contexts such as walking with exoskeleton assistance and walking on a splitbelt treadmill—
they found that prioritizing stability over short timescales and optimizing energy expenditure 
over long timescales, as well as using exploratory variability to estimate gradients, can 
explain learning in these contexts.40 Here, we provide experimental evidence of this. The 
notion that the nervous system uses exploration to evaluate candidate control policies and 
that it selects policies that optimize energetic cost, is similar to what we find in our current 
study.

Not all variability is exploration. We must first differentiate exploration from other 
contributors to measured biomechanical variability, such as that arising from unintentional 
noise in the nervous system’s control, variability in the forces that muscles produce, or 
unpredicted changes in the environment.41 Müller and Sternad sought to do so in a throwing 
task, where participants could influence their performance of hitting a target by varying 
two parameters: angle and velocity at release.42 They decomposed variability along these 
two parameters into components that differentiated task-relevant variability from stochastic 
noise. Here, we propose that baseline levels of variability in familiar contexts may mostly 
represent unintentional noise, either from the nervous system’s control or some other source 
(i.e., stochastic noise in Müller and Sternad’s terminology). This can then be used as a 
benchmark against which variability in new contexts is compared. We found that, upon first 
exposure to a new context, variability increased above baseline levels across all variables 
that we analyzed. With experience in the new context, variability gradually decreased and 
then plateaued across all variables that we analyzed, converging on baseline levels for 
some variables. We interpret variability as exploration when it is information seeking. 
That variability decreased as people learned to adapt the magnitude of specific variables—
and that these two processes occurred over similar timescales for each variable—suggests 
that variability may reflect exploration. As in other studies that aim to determine how 
variability relates to intentional exploration, we recognize that we can never entirely rule 
out the alternative hypothesis that variability is unintentional. However, this alternative 
hypothesis seems less likely based on theory—a key concept in reinforcement learning is 
that exploration improves learning of new optimal policies—and evidence—higher levels of 
motor variability appear to enable faster learning of new optimal policies.1,18 Plateauing of 
variability may indicate that the nervous system has settled on a new policy and has shifted 
from exploring candidate policies to exploiting the new preferred one. That variability 
remained elevated above baseline levels for some variables may reflect that the nervous 
system is still refining aspects of the control policy or, as we suspect, it may simply be 
additional variability introduced by imperfect torque control by the exoskeleton, which was 
not present when we established baseline levels.

A deeper understanding of the nervous system’s mechanisms for learning can be used to 
both facilitate learning and customize training. We might facilitate learning by encouraging 
general exploration. That is, we might increase variability across many variables—through 
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strategies such as biofeedback—and then decrease variability along specific variables as 
people learn to adapt, reducing the nervous system’s policy search space. We might also 
give experience with specific variables that affect energetic cost, indicating to the nervous 
system which variables are relevant to optimize.43 To improve on the design of this 
study, future studies should seek to determine the energetic cost landscape of walking 
with ankle exoskeleton assistance by mapping the relationship between energetic cost and 
biomechanical variables. Future studies should also seek to develop methods for estimating 
energetic cost with increased time resolution to determine how variability in biomechanical 
variables relates to changes in energetic cost for energetic cost optimization. This can benefit 
those who seek to design wearable systems—such as orthoses, exoskeletons, and prosthetics
—by facilitating learning, and then evaluating people’s optimal responses to a range of 
designs. We also might customize training time by using baseline levels of variability as a 
benchmark to indicate when the nervous system initiates exploration, and when it shifts to 
exploiting a new policy. Determining the onset and termination of learning would be useful 
for coaching athletes who would benefit from knowing at which point they should transition 
to learning new skills in order to maximize their high capacity for training, and knowing 
when to terminate experience is especially important for rehabilitating those with mobility 
disorders who have a limited capacity for training.

STAR ★ METHODS
RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 
will be fulfilled by the lead contact, J. Maxwell Donelan (mdonelan@sfu.ca).

Materials availability—This study did not generate new unique reagents.

Data and code availability—The datasets generated during this study are available at: 
https://searchworks.stanford.edu/catalog?f%5Bcollection%5D%5B%5D=pp784wp5100.

The codes generated during this study are available at: https://github.com/
SFULocomotionLab/GeneralVariabilitySpecificAdaptation.

EXPERIMENTAL MODEL AND SUBJECT DETAILS
We included a total of ten participants (mean ± SD; age: 24 ± 2 years; body mass: 68.3 
± 11.1 kg; height: 1.7 ± 0.094 m; sex: 4 females, 6 males) in our study. To investigate 
the nervous system’s learning mechanisms, we required that participants included in our 
study learned to reduce their energetic cost of walking with exoskeleton assistance. These 
ten participants consisted of two groups, which we randomly assigned participants to prior 
to the experiment. Each group of five participants completed similar protocols but with 
slight differences in additional trials that they completed from the second day onwards. 
Our previous study found that, despite these slight differences, these two groups learned 
to reduce their energetic cost of walking in response to a general pattern of assistive ankle 
torque on the last day compared to the first day (group 1: p = 0.016; group 2: p = 0.005). 
They also achieved similar reductions in energetic cost (p = 0.62).20 We therefore grouped 
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participants (n = 10) and restricted our analyses to changes in response to this general 
pattern of assistive ankle torque. We excluded a third group of five participants as they did 
not meet our requirement of learning to reduce their energetic cost of walking on the last day 
compared to the first day (group 3: p = 0.73).20 This was perhaps due to the nature of their 
additional trials, where they experienced many different patterns of assistive ankle torques. 
All participants were healthy and had no known gait or cardiopulmonary abnormalities. The 
Stanford Institutional Review Board approved the study protocol, and all participants gave 
their written, informed consent before participating in the study.

METHOD DETAILS

Exoskeleton hardware—Participants walked on an instrumented treadmill while wearing 
a bilateral, tethered ankle exoskeleton emulator that applied assistive torques to each ankle 
at each walking step. This system is described in more detail in our previous work.20,44 In 
brief, we used an off-board controller to command the desired force to an off-board electric 
motor via a motor driver.45 This force was then transmitted through a Bowden cable to the 
end of the ankle lever on the exoskeleton, which in turn applied an ankle plantarflexion 
torque to the participant. This ankle plantarflexion torque was achieved by the tension in 
the cable, combined with the moment arm of the ankle lever on the exoskeleton, producing 
forces on the body where it interfaces with the exoskeleton—the heel, the shank, and the 
toe.44

Exoskeleton controller—Our control system produced desired torque patterns as a 
function of the user’s stride time. As detailed in 20, we used a high-speed controller running 
at 1000 Hz to achieve the predefined torque pattern (Speedgoat, Liebefeld, Switzerland). 
This controller sampled from sensors, calculated time since heel strike as well as desired 
force at that time, and then commanded that force to the motor. We used contact switches on 
each heel to measure heel strikes and calculate stride time as the difference in time between 
consecutive heel strikes with the same leg (Pololu, NV, USA; McMaster-Carr, IL, USA). We 
used strain gauges to measure the tension in each cable and calculate torques by multiplying 
tension with the moment arm of the ankle lever on the exoskeleton (Omega Engineering, CT, 
USA). The combination of real-time measured stride times and torques allowed for accurate 
torque tracking that was a function of time since heel strike, normalized to average stride 
time. We used average stride time as a filter for large, perhaps inaccurate, changes in stride 
time that may result in undesirable torques. We calculated average stride time as:

tavg = tavg(1 − μ) + tstrideμ (Equation 1)

where μ = 0:9. Our controller was also designed to include many features that prioritized 
the user’s comfort.20 For example, at the beginning of all walking periods with exoskeleton 
assistance, the peak torque was slowly increased from zero to that of the predefined torque 
pattern to ensure that participants were not perturbed by the assistance. During each swing 
phase, the controller initiated a ‘swing mode’ where the cable tracked the ankle angle with 
added slack. And during each stance phase, the torque was slowly increased from zero after 
heel strike and decreased to zero before toe off as prescribed by the parameterization of the 
control law.
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Exoskeleton control law—We parameterized the control law to achieve a range of 
customized torque profiles, as well as one predefined torque profile. Because our original 
study was designed to test the relative benefits of training with a predefined control law 
and a customized control law,20 some participants received training with repeated exposure 
to the predefined control law, whereas other participants received training with human-in-
the-loop optimization of the control law and only periodic exposure to the predefined 
control law. All control laws were defined by four parameters: magnitude of peak torque 
(Nm), timing of peak torque (% stride), rise time (% stride), and fall time (% stride). We 
defined the magnitude of peak torque to be a function of each participant’s body mass. We 
determined the predefined control law in a pilot experiment prior to the main experiment.20 

In this pilot experiment, ten participants—which were not the participants in our main 
experiment—completed one day of habituation with the bilateral ankle exoskeletons 
followed by one day of human-in-the-loop optimization of the control law. The predefined 
control law for the main experiment was defined as the average optimized parameters from 
this pilot study: magnitude of peak torque was 0.54M where M is participant’s mass in 
kilograms, timing of peak torque was 52.9% of stride, rise time was 26.2% of stride, and fall 
time was 9.8% of stride.

Measurements—We measured ground reaction forces, joint kinematics, and muscle 
activity to quantify variables that people may optimize. First, we measured ground reaction 
forces and moments while participants walked on an instrumented split-belt treadmill 
(Bertec, Columbus, OH, USA). We used ground reaction forces and moments to calculate 
the center of pressure and identify foot contact events as the rapid fore-aft translation in 
center of pressure during double support. Second, we measured ankle angle in all trials 
with the exoskeleton using a rotary magnetic encoder mounted on the ankle joint of the 
exoskeleton (Renishaw, Gloucestershire, UK). We zeroed the encoder during standing 
on each day, and calculated ankle flexion and extension as the angle from neutral 
position in the sagittal plane. Third, we collected electromyography (EMG) data from 
medial gastrocnemius, lateral gastrocnemius, soleus, tibialis anterior, rectus femoris, vastus 
medialis, biceps femoris, and semitendinosus using surface electrodes on each muscle for 
both legs, and during all walking trials (Delsys, Boston, MA, USA). For the muscles 
that we considered in our analyses, we inspected EMG data to exclude channels with 
poor signal quality. Lastly, we used a respiratory gas analysis system to measure rates 
of oxygen consumption and carbon dioxide production (Cosmed Quark CPET, Rome, 
Italy). We calculated gross metabolic power using the standard Brockway equation, and 
then subtracted each participant’s resting metabolic power measured on the same day 
to obtain net metabolic power.46 We calculated resting metabolic power as the average 
metabolic power during the final three minutes of a five-minute standing resting period at 
the beginning of each day of testing. We collected EMG at 1000 Hz and all other measures 
at 500 Hz.

Behavioral task—The protocol consisted of a testing session on each day for a total 
of 6 days. During all testing sessions, participants walked on an instrumented treadmill 
at a constant speed of 1.25 m/s. For conditions that involved exoskeleton assistance, we 
instructed participants to ‘‘walk comfortably’’ and to ‘‘let the device do the work for you’’.
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We gave participants experience with walking with exoskeleton assistance over multiple 
days. On each day, participants experienced at least 3 conditions: walking without the 
ankle exoskeletons (Figure 1A), walking with the ankle exoskeletons providing minimal 
applied torques via slack cables (Figure 1B), and walking with the ankle exoskeletons with 
the predefined control law generating assistive ankle torques at each walking step (Figure 
1C). Some participants had an additional walking condition from the second day onwards, 
where they experienced the final control law from human-in-the-loop optimization during 
additional trials on that same day. Participants completed these conditions twice for six 
minutes each. The conditions were first completed in random order, and then again in that 
same order, but reversed (e.g. CABBAC; Figures 1D and 1E). When comparing between 
conditions or days, we averaged a given variable over the final three minutes of each 
six-minute trial, and then across the two repeated six-minute trials on each day.

Participants completed additional trials which altered the training that each group received. 
We did not include these trials in our analyses as they were designed primarily to test the 
effect of different training protocols in our previous study.20 They were also designed to 
increase participants’ experience with the predefined control law. Participants completed 
these trials from the second day onward, prior to the main six-minute trials (Figure 1E). In 
brief, one group (n = 5) repeatedly experienced the predefined control law at each walking 
step over 72 minutes (Figure S1). A second group (n = 5) experienced two minutes of 
the predefined control law followed by 16 minutes of human-in-the-loop optimization, and 
repeated this four times resulting in 72 minutes of training (Figure S1). During periods of 
human-in-the-loop optimization, participants experienced a series of eight control laws for 
two minutes each. We selected these control laws based on our estimate of the optimal 
control law, which was determined by an algorithm that ranked previously experienced 
control laws by their respective energetic cost measurements. The process of human-in-the-
loop optimization is described in more detail in our previous work.20,44

QUANTIFICATION AND STATISTICAL ANALYSIS
We wrote custom MATLAB scripts to process and analyze the data, as well as perform 
statistical comparisons and generate figures included in this manuscript.

Step frequency calculation—We quantified the variability and magnitude of step 
frequency. This variable can influence exoskeleton assistance through the timing of the 
assistive torque pattern because rise time, peak torque time, and fall time were all expressed 
as percentages of stride time in our control law parameterization. We calculated step 
frequency by identifying foot contact events and then taking the inverse time difference 
between consecutive steps. We determined the variability within step frequency by applying 
a third-order, high-pass, bidirectional digital Butterworth filter with a cut-off frequency of 
0.033 steps−1 (period of 30 steps), and then calculated the standard deviation of this filtered 
signal during the last three minutes of each six-minute trial. We used MATLAB’s filtfilt 
command to perform zero-phase digital filtering. We determined the cut-off frequency to be 
0.033 steps−1 based on previous studies of variability in human walking,47 as well as visual 
inspection of the power spectrum. We calculated the magnitude of step frequency as the 
average of this signal during the last three minutes of each six-minute trial.
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Ankle angle calculation—We quantified the variability and magnitude of ankle angle 
range during stance. This variable can influence the power and work that the exoskeleton 
applies to the ankle by changing the angle over which the torque is applied. We calculated 
ankle angle range during stance by first time-locking ankle angle to heel strike events, and 
then calculating the difference between the maximum and minimum ankle angles during 
stance. We determined the variability within ankle angle range by applying a high-pass filter 
with a cut-off frequency of 0.033 steps−1 (third-order Butterworth), and then calculated the 
standard deviation of this filtered signal during the last three minutes of each six-minute 
trial. We calculated the magnitude of ankle angle range as the average of this signal during 
the last three minutes of each six-minute trial.

Ankle extensor muscle activity calculation—We quantified the variability and 
magnitude of total ankle extensor muscle activity. The nervous system may learn to accept 
assistive torques at the ankle by lowering the contribution to the total ankle torque provided 
by the extensor muscles. We selected two variables at the level of the muscle as there are 
two primary ankle extensor muscles—soleus and gastrocnemius. For each muscle on each 
leg, we applied a high-pass filter with a 20 Hz cut-off (third-order Butterworth), rectified the 
signal, and then applied a low-pass filter with a 6 Hz cut-off (third-order Butterworth).48 We 
next time-locked the signal to heel strike events, divided each stance phase into 100 evenly 
spaced segments, and normalized each muscle’s activity for each participant to their same 
day average peak activation while walking without the ankle exoskeletons. We calculated 
total soleus activity and total medial gastrocnemius activity by integrating each muscle’s 
activity during stance at each walking step. Similar to our previous analyses, we quantified 
the variability of total soleus activity and total medial gastrocnemius activity by applying a 
high-pass filter with a cut-off frequency of 0.033 steps−1 (third-order Butterworth), and then 
calculated the standard deviation of each filtered signal during the last three minutes of each 
six-minute trial. We calculated the magnitude of each muscle’s total activity as the average 
of its signal during the last three minutes of each six-minute trial.

Additional variables—We analyzed four additional variables: step width, peak ankle 
extension angle, total rectus femoris activity, and total biceps femoris activity. We calculated 
step width by identifying foot contact events and then taking the difference between the 
lateral centers of pressures—which we determined by dividing the left and right lateral 
moments by their vertical forces—for consecutive steps. We calculated peak ankle extension 
angle by first time-locking ankle angle to heel strike events, and then calculating the peak 
angle during the stride. Similar to our previous analysis of muscle activity, we calculated 
total rectus femoris activity and total biceps femoris activity by first applying a high-pass 
filter, rectifying the signals, and then applying a low-pass filter. We next time-locked the 
signals to heel strike events and normalized each muscle’s activity to its average peak 
activation while walking without the ankle exoskeletons on the same day. We calculated 
total muscle activity by integrating each muscle’s activity during stance at each walking 
step. Lastly, we quantified the variability and magnitude of each additional variable in the 
same way as our original four variables. That is, we calculated the variability of each 
variable by applying a high-pass filter with a cut-off frequency of 0.033 steps−1 (third-order 
Butterworth), and then calculated the standard deviation of this filtered signal during the 
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last three minutes of each six-minute trial. We calculated the magnitude of each variable by 
averaging its signal during the last three minutes of each six-minute trial. We analyzed these 
additional variables and reported these additional results in Figures S2–S4.

Sensitivity analysis—Our choice of high-pass filter cut-off frequency makes an 
assumption about the timescale of changes in variability. We performed a sensitivity analysis 
of this high-pass filter cut-off frequency to determine the effect of this assumption. In our 
main analysis, we used a high-pass filter cut-off frequency of 0.033 steps−1 (period of 30 
steps). Here, we performed the same analysis but with high-pass filter cut-off frequencies 
of 0.1 steps−1 (period of 10 steps) and 0.02 steps−1 (period of 50 steps). This sensitivity 
analysis revealed that changes in variability over timescales ranging from 10–50 steps 
do not impact our findings of general variability. That is, across all variables that we 
analyzed, we observed increases in with-assistance variability on the first day compared to 
without-assistance baseline, and then decreases in with-assistance variability on the last day 
compared to the first day. We summarized these results in Table S1.

Statistics—We compared variability in the with-assistance condition to variability in 
the without-assistance condition for each variable. We refer to variability in the without-
assistance condition averaged across the two six-minute trials on the first day as ‘‘baseline 
variability’’. For most variables, we quantified each participant’s baseline from the condition 
where they walked without the ankle exoskeletons. For ankle angle range, we instead used 
the condition where participants walked with the ankle exoskeletons but with the devices 
applying minimal torques as we needed the exoskeleton sensors to calculate ankle angle. We 
calculated with-assistance variability on the first day by averaging variability across the two 
six-minute trials where participants walked with the ankle exoskeletons with the predefined 
control law generating assistive ankle torques at each walking step. For each variable, we 
used a one-tailed paired Student’s t-test to determine whether with-assistance variability 
on the first day was higher than baseline variability. In all statistical analyses, we used a 
significance level of 0.05.

We determined how participants modified with-assistance variability along each variable as 
they gained experience walking with exoskeleton assistance. We calculated with-assistance 
variability on the last day by averaging variability across the two six-minute trials. For each 
variable, we used a one-tailed paired Student’s t-test to determine whether with-assistance 
variability on the last day was lower than the first day. We used a two-tailed paired Student’s 
t-test to determine if with-assistance variability on the last day had converged on baseline 
variability. Lastly, we normalized each participant’s with-assistance variability in each six-
minute trial to their baseline variability.

We determined how participants adapted the magnitude of each variable as they gained 
experience walking with exoskeleton assistance. We calculated the magnitude of each 
variable on the first day and the last day by averaging magnitude across the two six-minute 
with-assistance trials on each day. We used a two-tailed paired Student’s t-test to determine 
whether participants adapted the magnitude of each variable on the last day compared to the 
first day. We normalized the magnitude of each variable in each six-minute with-assistance 
trial to each participant’s baseline value. We calculated the baseline value by averaging the 

Abram et al. Page 16

Curr Biol. Author manuscript; available in PMC 2023 May 23.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



magnitude of each variable across the two six-minute without-assistance trials on the first 
day.

We estimated the slope of the relationship between a variable and energetic cost. We 
used each variable’s normalized values during all with-assistance trials and their respective 
metabolic costs. For each six-minute trial, we calculated steady-state metabolic cost by 
averaging net metabolic power during the final 3 minutes. We normalized metabolic 
cost during all with-assistance trials to each participant’s metabolic cost during without-
assistance trials on the first day, which we calculated by averaging metabolic cost over the 
two six-minute trials of walking with ankle exoskeletons applying minimal torques. We 
used a linear mixed-effects regression model to estimate participants’ shared relationship 
between a given variable and energetic cost, while allowing for individual differences in 
their energetic cost intercepts. When plotting this linear model with individual participant 
data, we subtracted each participant’s random effects term (offset) from their data to better 
illustrate the fixed effects term (slope) that was the focus of this analysis. For each variable, 
we used a Student’s t-test to test if the slope of the linear model was different from zero.

We modeled the timing of adaptive changes, as well as the timing of decreases in variability, 
for each variable as an exponential decrease from an initial value to a final steady-state 
value. We used nonlinear mixed-effects regression of the form:

Y (t) = a × e−t/τ + b (Equation 2)

where t is the experience calculated as the total amount of walking time with exoskeleton 
assistance and Y(t) is the model output, which is the magnitude or variability of a given 
variable. We determined the total amount of walking time with exoskeleton assistance as 
the time spent walking in the with-assistance trials that we analyzed, as well as the time 
spent walking in the additional trials where participants experienced assistive ankle torques 
in human-in-the-loop optimization. We estimated the time constant (τ), amplitude (a), and 
offset (b) model parameters using nonlinear optimization. We used a mixed-effects model 
to estimate a single time constant (τ) that is shared between participants while allowing 
for individual participant offsets (b). When plotting this exponential model with individual 
participant data, we subtracted each participant’s random effects term (offset) from their data 
to better illustrate the fixed effects term (time constant) that was the focus of this analysis.

We compared time constants between variables. First, we used bootstrapping to estimate 
the dispersion of each time constant.49,50 We used the model output from Equation 2 to 
calculate each participant’s residuals as the difference between their data points and the 
model output at these time points. We sampled from each participant’s residuals with 
replacement, and then added each participant’s residuals to the model output at these time 
points to simulate 10 new participants. We fit the exponential model to 10 new participants 
to simulate a new experiment and estimate a new time constant, and then repeated this 
process 10000 times for the time constants of adaptation, as well as for the time constants of 
variability, for each variable. For each time constant, we report the median and interquartile 
range (IQR), calculated as the difference between 75th and 25th percentiles. We did not 
observe adaptation in ankle angle range during stance and therefore excluded this variable 
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from this analysis. Next, we tested for differences in time constants of adaptation between 
step frequency, total soleus activity, and total medial gastrocnemius activity. We used a 
Kruskal–Wallis one-way ANOVA to test for differences in time constants of adaptation 
between variables—the bootstrapped time constants did not follow a normal distribution 
(Anderson–Darling test; p = 5.0 × 10−4)—and then performed a multiple comparison 
test (Dunn–Šidák correction) of the time constants. We repeated the same analysis but 
for time constants of variability. We report p-values for total soleus activity versus total 
medial gastrocnemius activity, total soleus activity versus step frequency, and total medial 
gastrocnemius activity versus step frequency.
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Highlights

• In new contexts, the nervous system explores through increases in gait 
variability

• With experience, the nervous system selectively adapts specific aspects of gait

• Simultaneously, the nervous system reduces exploration along these aspects

• The nervous system’s adaptive changes reduce the energetic cost of walking
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Figure 1. Experimental design and protocol
All participants experienced two main contexts: without-assistance and with-assistance.
(A and B) In the without-assistance context, participants (A) walked without the ankle 
exoskeletons or (B) walked while wearing the ankle exoskeletons with minimal applied 
torques via slack cables.
(C) In the with-assistance context, participants walked while wearing the ankle exoskeletons 
which used a predefined control law to generate assistive ankle torques at each walking step.
(D) On day 1, all participants completed these three conditions twice.
(E) On days 2–6, all participants completed additional trials that were followed by the 
original three conditions twice.
See also Figure S1.
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Figure 2. Changes in variability as participants gain experience with exoskeleton assistance
(A–D) (A) Step frequency variability, (B) ankle angle range variability, (C) total soleus 
variability, and (D) total medial gastrocnemius variability. Variability in muscle activity 
is expressed as a fraction of the peak activation (see STAR Methods). Walking without 
the ankle exoskeletons is shown in beige, walking with the ankle exoskeletons with 
minimal applied torques is shown in red, and walking with the ankle exoskeletons with 
the predefined control law generating assistive torques at each walking step is shown in blue. 
Circular markers are participant averages, which we calculated by averaging each variable’s 
variability across two 6-min trials on a given day. Bar height is average across participants, 
error bars represent one standard deviation, and asterisks indicate statistically significant 
differences between conditions or days using the notation: *** for p < 0.001, ** for p < 
0.01, * for p < 0.05, and n.s. for not significant.
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(E) Measured step frequency in strides per minute (spm) as a function of walking time in 
a given 6-min trial, and measured ankle angle, soleus activity, and medial gastrocnemius 
activity for the left leg as a function of stance phase at each walking step in a given 6-min 
trial. Data are from one representative participant.
See also Figure S2.
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Figure 3. Changes in magnitude of variables that reduce energetic cost
(A–D) Correlation between energetic cost and (A) step frequency, (B) ankle angle range 
during stance, (C) total soleus activity, and (D) total medial gastrocnemius activity 
during with-assistance trials across all days. We normalized energetic cost during all 
with-assistance trials to each participant’s energetic cost during without-assistance trials—
when walking with ankle exoskeletons with minimal applied torques—on the first day. 
We normalized each variable’s with-assistance magnitude to each participant’s without-
assistance baseline value. The solid black lines are linear mixed-effects models with 95% 
confidence intervals (gray shading). Individual participants are represented by distinct 
colored circles. Each participant experienced the same number of with-assistance trials—
2 per day for 6 days. To better illustrate a variable’s correlation with energetic cost as 
determined by the linear mixed-effects model, we subtracted each participant’s random 
effects intercept term from their energetic cost data, which changes their cost data between 
variables (see STAR Methods).
(E–H) Magnitude of (E) step frequency, (F) ankle angle range, (G) total soleus activity, and 
(H) total medial gastrocnemius activity during with-assistance trials on the first day and on 
the last day.
(I) Energetic cost during without-assistance trials on the first day, as well as during with-
assistance trials on the first day and the last day. Without-assistance trials include walking 
without the ankle exoskeletons (beige) and walking with the ankle exoskeletons with 
minimal applied torques (red). With-assistance trials are walking with the ankle exoskeletons 
generating assistive torques at each step (blue). Bar height is average across participants, 
error bars represent one standard deviation, and asterisks indicate statistically significant 
differences between days using the notation: *** for p < 0.001, ** for p < 0.01, * for p < 
0.05, and n.s. for not significant.
See also Figure S3.
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Figure 4. Timescales of changes in variability and changes in magnitude
(A–D) Changes in magnitude of (A) step frequency, (B) ankle angle range during stance, (C) 
total soleus activity, and (D) total medial gastrocnemius activity as experience increased.
(E–H) Changes in variability of (E) step frequency, (F) ankle angle range during stance, (G) 
total soleus activity, and (H) total medial gastrocnemius activity as experience increased.
For each variable, we normalized with-assistance magnitude and variability to each 
participant’s without-assistance baseline levels (dashed horizontal lines). The solid black 
lines are exponential model fits with 95% confidence intervals (gray shading). We did not 
fit an exponential model to (B) as we did not observe changes in magnitude of ankle 
angle range during stance. Individual participants—represented by distinct colored circles
—experienced the same number of with-assistance trials—2 per day for 6 days—but at 
different experience times depending on the design of their additional trials. To better 
illustrate the exponential fit, we subtracted each participant’s random effects offset from the 
plotted data. The elapsed experience time includes not only the time spent walking in the 
with-assistance trials that we analyzed here but also the time spent walking in the additional 
exoskeleton training trials.
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Figure 5. Differences in timescales between variables
(A) Time constants of adaptation and (B) time constants of variability for step frequency, 
total soleus activity, and total medial gastrocnemius activity during with-assistance trials 
(blue). We did not observe adaptation in ankle angle range during stance and therefore 
excluded this variable from this analysis. The central mark indicates the median, the bottom 
edge of the box indicates the lower quartile (25th percentile), and the top edge of the box 
indicates the upper quartile (75th percentile). Error bars extend to the most extreme data 
points not considered outliers, which we define as more than 1.5 times the interquartile 
range away from the edges of the box. Asterisks indicate statistically significant differences 
between variables using the notation: *** for p < 0.001.
See also Figure S4.
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Figure 6. Changes in variability in response to the new context of split-belt walking
Variability in step length asymmetry during the first 100 strides of tied-belt walking (beige), 
during the first 100 strides of split-belt (blue), and during the last 100 strides of split-belt 
(blue). Bar height is average across participants (n = 15), error bars represent one standard 
deviation, and asterisks indicate statistically significant differences using the notation: *** 
for p < 0.001.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Device, metabolic, and EMG data for participant 1 This paper https://purl.stanford.edu/st957pf8319

Device, metabolic, and EMG data for participant 2 This paper https://purl.stanford.edu/mw935fz1170

Device, metabolic, and EMG data for participant 3 This paper https://purl.stanford.edu/yr312kt5378

Device, metabolic, and EMG data for participant 4 This paper https://purl.stanford.edu/hq152jn6095

Device, metabolic, and EMG data for participant 5 This paper https://purl.stanford.edu/mh986bj2257

Device, metabolic, and EMG data for participant 6 This paper https://purl.stanford.edu/jj710vy7867

Device, metabolic, and EMG data for participant 7 This paper https://purl.stanford.edu/ww452xb7000

Device, metabolic, and EMG data for participant 8 This paper https://purl.stanford.edu/mm626wf3265

Device, metabolic, and EMG data for participant 9 This paper https://purl.stanford.edu/zr858qp8088

Device, metabolic, and EMG data for participant 10 This paper https://purl.stanford.edu/hs191pw6736

Software and algorithms

MATLAB 2019a Mathworks https://www.mathworks.com/
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