2,907 research outputs found

    Newtonian Limit of Conformal Gravity

    Get PDF
    We study the weak-field limit of the static spherically symmetric solution of the locally conformally invariant theory advocated in the recent past by Mannheim and Kazanas as an alternative to Einstein's General Relativity. In contrast with the previous works, we consider the physically relevant case where the scalar field that breaks conformal symmetry and generates fermion masses is nonzero. In the physical gauge, in which this scalar field is constant in space-time, the solution reproduces the weak-field limit of the Schwarzschild--(anti)DeSitter solution modified by an additional term that, depending on the sign of the Weyl term in the action, is either oscillatory or exponential as a function of the radial distance. Such behavior reflects the presence of, correspondingly, either a tachion or a massive ghost in the spectrum, which is a serious drawback of the theory under discussion.Comment: 9 pages, comments and references added; the version to be published in Phys. Rev.

    Implications of Cosmic Repulsion for Gravitational Theory

    Full text link
    In this paper we present a general, model independent analysis of a recently detected apparent cosmic repulsion, and discuss its potential implications for gravitational theory. In particular, we show that a negatively spatially curved universe acts like a diverging refractive medium, to thus naturally cause galaxies to accelerate away from each other. Additionally, we show that it is possible for a cosmic acceleration to only be temporary, with some accelerating universes actually being able to subsequently recontract.Comment: RevTeX, 13 page

    The democratic origins of the term "group analysis": Karl Mannheim's "third way" for psychoanalysis and social science.

    Get PDF
    It is well known that Foulkes acknowledged Karl Mannheim as the first to use the term ‘group analysis’. However, Mannheim’s work is otherwise not well known. This article examines the foundations of Mannheim’s sociological interest in groups using the Frankfurt School (1929–1933) as a start point through to the brief correspondence of 1945 between Mannheim and Foulkes (previously unpublished). It is argued that there is close conjunction between Mannheim’s and Foulkes’s revision of clinical psychoanalysis along sociological lines. Current renderings of the Frankfurt School tradition pay almost exclusive attention to the American connection (Herbert Marcuse, Eric Fromm, Theodor Adorno and Max Horkheimer) overlooking the contribution of the English connection through the work of Mannheim and Foulkes

    Local and global gravity

    Full text link
    Our long experience with Newtonian potentials has inured us to the view that gravity only produces local effects. In this paper we challenge this quite deeply ingrained notion and explicitly identify some intrinsically global gravitational effects. In particular we show that the global cosmological Hubble flow can actually modify the motions of stars and gas within individual galaxies, and even do so in a way which can apparently eliminate the need for galactic dark matter. Also we show that a classical light wave acquires an observable, global, path dependent phase in traversing a gravitational field. Both of these effects serve to underscore the intrinsic difference between non-relativistic and relativistic gravity.Comment: LaTeX, 20 pages plus three figures in two postscript files. To appear in a special issue of Foundations of Physics honoring Professor Lawrence Horwitz on the occasion of his 65th birthday; A. van der Merwe and S. Raby, Editors, Plenum Publishing Company, N.Y., 199

    Bounds on Localized Modes in the Crystal Impurity Problem

    Full text link
    Using general properties of the crystal site representation normal mode matrix, we provide some very simple bounds on localized modes in simple, body-centered and face-centered cubic crystals with substitutional point defects. We derive a trace condition constraint on the net change in crystal eigenfrequencies caused by the introduction of a defect, with the condition being a completely general one which holds for any combination of central and non-central crystal force-constants and for all-neighbor interactions. Using this condition we show that the sufficient condition for producing localized modes in an arbitrary cubic crystal by a mass change at the defect site is that the defect mass be less than one half of that of the host atom mass which it replaces, and that the sufficient condition for producing localized modes in an arbitrary cubic crystal by force-constant changes alone is that the defect site self force-constant be greater than twice that of the pure crystal self force-constant of the host atom which it replaces.Comment: 25 pages, 3 figures, revtex4. Updated version contains much more general bounds than original versio

    Light deflection in Weyl gravity: critical distances for photon paths

    Full text link
    The Weyl gravity appears to be a very peculiar theory. The contribution of the Weyl linear parameter to the effective geodesic potential is opposite for massive and nonmassive geodesics. However, photon geodesics do not depend on the unknown conformal factor, unlike massive geodesics. Hence light deflection offers an interesting test of the Weyl theory. In order to investigate light deflection in the setting of Weyl gravity, we first distinguish between a weak field and a strong field approximation. Indeed, the Weyl gravity does not turn off asymptotically and becomes even stronger at larger distances. We then take full advantage of the conformal invariance of the photon effective potential to provide the key radial distances in Weyl gravity. According to those, we analyze the weak and strong field regime for light deflection. We further show some amazing features of the Weyl theory in the strong regime.Comment: 20 pages, 9 figures (see published version for a better resolution, or online version at stacks.iop.org/CQG/21/1897

    On photohadronic processes in astrophysical environments

    Full text link
    We discuss the first applications of our newly developed Monte Carlo event generator SOPHIA to multiparticle photoproduction of relativistic protons with thermal and power law radiation fields. The measured total cross section is reproduced in terms of excitation and decay of baryon resonances, direct pion production, diffractive scattering, and non-diffractive multiparticle production. Non--diffractive multiparticle production is described using a string fragmentation model. We demonstrate that the widely used `Δ\Delta--approximation' for the photoproduction cross section is reasonable only for a restricted set of astrophysical applications. The relevance of this result for cosmic ray propagation through the microwave background and hadronic models of active galactic nuclei and gamma-ray bursts is briefly discussed.Comment: 9 pages including 4 embedded figures, submitted to PAS
    • …
    corecore